Skip to main content
Log in

Involvement of LIMK2 in actin cytoskeleton remodeling during the definitive endoderm differentiation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

LIM kinases are involved in various cellular events such as migration, cycle, and differentiation, but whether they have a role in the specification of mammalian early endoderm remains unclear. In the present study, we found that depletion of LIMK2 severely inhibited the generation of definitive endoderm (DE) from human embryonic stem cells (hESCs) and promoted an early neuroectodermal fate. Upon the silencing of LIMK2 during the endodermal differentiation, the assembly of actin stress fibers was disturbed, and the phosphorylation of cofilin was decreased. In addition, knockdown of LIMK2 during DE differentiation also interfered the upregulation of epithelial-to-mesenchymal transition (EMT)-related genes and cell migration. Collectively, the results highlight that the serine/threonine kinase LIMK2, acting as a key regulator in actin remodeling, plays a critical role in endodermal lineage determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393(6687):805–809

    Article  CAS  Google Scholar 

  • Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10(2):91–103

    Article  CAS  Google Scholar 

  • Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N, Weis WI, Nelson WJ, Dunn AR (2014) Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346(6209):1254211

    Article  Google Scholar 

  • D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23(12):1534–1541

    Article  Google Scholar 

  • da Silva RA, da C Fernandes CJ, da S Feltran G, Gomes AM, de Camargo Andrade AF, Andia DC, Peppelenbosch MP, Zambuzzi WF (2019) Laminar shear stress-provoked cytoskeletal changes are mediated by epigenetic reprogramming of TIMP1 in human primary smooth muscle cells. J Cell Physiol 234(5):6382–6396

    Article  Google Scholar 

  • Davidson AJ, Wood W (2016) Unravelling the actin cytoskeleton: a new competitive edge? Trends Cell Biol 26(8):569–576

    Article  CAS  Google Scholar 

  • Echarri A, Pavon DM, Sanchez S, Garcia-Garcia M, Calvo E, Huerta-Lopez C, Velazquez-Carreras D, Viaris de Lesegno C, Ariotti N, Lazaro-Carrillo A, Strippoli R, De Sancho D, Alegre-Cebollada J, Lamaze C, Parton RG, Del Pozo MA (2019) An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat Commun 10(1):5828

    Article  CAS  Google Scholar 

  • Feng S, Wu J, Qiu WL, Yang L, Deng X, Zhou Y, Chen Y, Li X, Yu L, Li H, Xu ZR, Xiao Y, Ren X, Zhang L, Wang C, Sun Z, Wang J, Ding X, Chen Y, Gadue P, Pan G, Ogawa M, Ogawa S, Na J, Zhang P, Hui L, Yin H, Chen L, Xu CR, Cheng X (2020) Large-scale generation of functional and transplantable hepatocytes and cholangiocytes from human endoderm stem cells. Cell Rep 33(10):108455

    Article  CAS  Google Scholar 

  • Hamidi S, Nakaya Y, Nagai H, Alev C, Kasukawa T, Chhabra S, Lee R, Niwa H, Warmflash A, Shibata T, Sheng G (2020) Mesenchymal-epithelial transition regulates initiation of pluripotency exit before gastrulation. Development 147(3):dev184960

    Article  CAS  Google Scholar 

  • Han L, Chaturvedi P, Kishimoto K, Koike H, Nasr T, Iwasawa K, Giesbrecht K, Witcher PC, Eicher A, Haines L, Lee Y, Shannon JM, Morimoto M, Wells JM, Takebe T, Zorn AM (2020) Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat Commun 11(1):4158

    Article  CAS  Google Scholar 

  • Huang H, He X (2008) Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20(2):119–125

    Article  CAS  Google Scholar 

  • Jensen P, Carlet M, Schlenk RF, Weber A, Kress J, Brunner I, Słabicki M, Grill G, Weisemann S, Cheng YY, Jeremias I, Scholl C, Fröhling S (2020) Requirement for LIM kinases in acute myeloid leukemia. Leukemia 34(12):3173–3185

    Article  Google Scholar 

  • Kim J, Jo H, Hong H, Kim MH, Kim JM, Lee JK, Heo WD, Kim J (2015) Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat Commun 6:6781

    Article  Google Scholar 

  • Kokkinos MI, Murthi P, Wafai R, Thompson EW, Newgreen DF (2010) Cadherins in the human placenta--epithelial-mesenchymal transition (EMT) and placental development. Placenta 31(9):747–755

    Article  CAS  Google Scholar 

  • Lee B, Lee S, Agulnick AD, Lee JW, Lee SK (2016) Single-stranded DNA binding proteins are required for LIM complexes to induce transcriptionally active chromatin and specify spinal neuronal identities. Development 143(10):1721–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Huang Q (2019) Single-cell qPCR demonstrates that Repsox treatment changes cell fate from endoderm to neuroectoderm and disrupts epithelial-mesenchymal transition. PLoS One 14(10):e0223724

    Article  CAS  Google Scholar 

  • Li Q, Hutchins AP, Chen Y, Li S, Shan Y, Liao B, Zheng D, Shi X, Li Y, Chan WY, Pan G, Wei S, Shu X, Pei D (2017) A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Nat Commun 8:15166

    Article  Google Scholar 

  • Li S, Huang Q, Mao J, Li Q (2020) TGF beta-dependent mitochondrial biogenesis is activated during definitive endoderm differentiation. In Vitro Cell Dev Biol Anim 56(5):378–385

    Article  CAS  Google Scholar 

  • Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo MM, Kemler R (2002) Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell 3(2):171–181

    Article  CAS  Google Scholar 

  • Mao R, Deng R, Wei Y, Han L, Meng Y, Xie W, Jia Z (2019) LIMK1 and LIMK2 regulate cortical development through affecting neural progenitor cell proliferation and migration. Mol Brain 12(1):67

    Article  Google Scholar 

  • Nikhil K, Chang L, Viccaro K, Jacobsen M, McGuire C, Satapathy SR, Tandiary M, Broman MM, Cresswell G, He YJ, Sandusky GE, Ratliff TL, Chowdhury D, Shah K (2019) Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer. Cancer Lett 448:182–196

    Article  CAS  Google Scholar 

  • Park JI, Kim SW, Lyons JP, Ji H, Nguyen TT, Cho K, Barton MC, Deroo T, Vleminckx K, Moon RT, McCrea PD (2005) Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev Cell 8(6):843–854

    Article  CAS  Google Scholar 

  • Rodino-Janeiro BK, Martinez C, Fortea M, Lobo B, Pigrau M, Nieto A, Gonzalez-Castro AM, Salvo-Romero E, Guagnozzi D, Pardo-Camacho C, Iribarren C, Azpiroz F, Alonso-Cotoner C, Santos J, Vicario M (2018) Decreased TESK1-mediated cofilin 1 phosphorylation in the jejunum of IBS-D patients may explain increased female predisposition to epithelial dysfunction. Sci Rep 8(1):2255

    Article  Google Scholar 

  • Sakurai K, Talukdar I, Patil VS, Dang J, Li Z, Chang KY, Lu CC, Delorme-Walker V, Dermardirossian C, Anderson K, Hanein D, Yang CS, Wu D, Liu Y, Rana TM (2014) Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. Cell Stem Cell 14(4):523–534

    Article  CAS  Google Scholar 

  • Sousa-Squiavinato ACM, Rocha MR, Barcellos-de-Souza P, de Souza WF, Morgado-Diaz JA (2019) Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells. Biochim Biophys Acta, Mol Cell Res 1866(3):418–429

    Article  CAS  Google Scholar 

  • Sun J, Stathopoulos A (2018) FGF controls epithelial-mesenchymal transitions during gastrulation by regulating cell division and apicobasal polarity. Development 145(19):dev.161927

    Article  Google Scholar 

  • Vallée B, Cuberos H, Doudeau M, Godin F, Gosset D, Vourc'h P, Andres CR, Bénédetti H (2018) LIMK2-1, a new isoform of human LIMK2, regulates actin cytoskeleton remodeling via a different signaling pathway than that of its two homologs, LIMK2a and LIMK2b. Biochem J 475(23):3745–3761

    Article  Google Scholar 

  • Vardouli L, Moustakas A, Stournaras C (2005) LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem 280(12):11448–11457

    Article  CAS  Google Scholar 

  • Wei F, Xu X, Zhang C, Liao Y, Ji B, Wang N (2020) Stress fiber anisotropy contributes to force-mode dependent chromatin stretching and gene upregulation in living cells. Nat Commun 11(1):4902

    Article  CAS  Google Scholar 

  • Xu M, Wang F, Li G, Wang X, Fang X, Jin H, Chen Z, Zhang J, Fu L (2019) MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC. Mol Cancer 18(1):93

    Article  Google Scholar 

  • Yiangou L, Ross ADB, Goh KJ, Vallier L (2018) Human pluripotent stem cell-derived endoderm for modeling development and clinical applications. Cell Stem Cell 22(4):485–499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Xiaodong Shu from Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, for providing technical supports.

Funding

The work was supported by grants from Key Technologies Research and Development Program of China [grant number 2019YFA0111300], National Natural Science Foundation of China [grant numbers 31701183], Natural Science Foundation of Guangdong Province [grant number 2019A1515011324], Applied Basic Research Program of Sichuan Province [grant number 2021YJ0200], and Southwest Medical University [grant number 2020ZRQNA020].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengbiao Li or Qiuhong Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editor: Tetsuji Okamoto

Supplementary Information

Supplementary Figure 1:

STR analysis of H1 cell line. (A) Match analysis. (B) Electropherogram of H1 cell line. (PNG 942 kb)

High resolution (TIF 4447 kb)

Supplementary Data 1:

siRNA sequences and primer sequences for RT-qPCR (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhang, L., He, Y. et al. Involvement of LIMK2 in actin cytoskeleton remodeling during the definitive endoderm differentiation. In Vitro Cell.Dev.Biol.-Animal 57, 493–500 (2021). https://doi.org/10.1007/s11626-021-00582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-021-00582-6

Keywords

Navigation