Skip to main content

Advertisement

Log in

Numerical study of nanocomposite phase change material-based heat sink for the passive cooling of electronic components

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The current two-dimensional (2D) numerical study presents the melting phenomenon and heat transfer performance of the nanocomposite phase change material (NCPCM) based heat sink. Metallic nanoparticles (copper: Cu) of different volume fractions of 0.00, 0.01, 0.03, and 0.05 were dispersed in RT–28HC, used as a PCM. Transient simulations with conjugate heat transfer and melting/solidification schemes were formulated using finite–volume–method (FVM). The thermal performance and melting process of the NCPCM filled heat sink were evaluated through melting time, heat storage capacity, heat storage density, rate of heat transfer and rate of heat transfer density. The results showed that with the addition of Cu nanoparticles, the rate of heat transfer was increased and melting time was reduced. The reduction in melting time was obtained of − 1.36%, − 1.81%, and − 2.56% at 0.01, 0.03, and 0.05, respectively, compared with 0.00 NCPCM based heat sink. The higher heat storage capacity enhancement of 1.87% and lower reduction of − 7.23% in heat storage density was obtained with 0.01 volume fraction. The enhancement in rate of heat transfer was obtained of 2.86%, 2.19% and 1.63%; and reduction in rate of heat transfer density was obtained of − 6.33%, − 21.05% and − 31.82% with 0.01, 0.03, and 0.05 volume fraction of Cu nanoparticles, respectively. The results suggest that Cu nanoparticles of 0.01 volume fraction has the lower melting rate, higher heat storage capacity and heat transfer rate, lower heat storage density and heat transfer rate density which is preferable for passive cooling electronic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Al2 O 3 :

Aluminum oxide

Cu:

Copper

FVM:

Finite volume method

HS:

Heat sink

ICs:

Integrated circuits

NCPCM:

Nanocomposite phase change material

PCM:

Phase change material

PRESTO:

PREssure STaggering Option

QUICK:

Quadratic Upstream Interpolation for Convective Kinematics

SIMPLE:

Semi-Implicit Pressure-Linked Equation

UDF:

User–defined function

A m :

Mushy zone

B :

Boltzman constant (J/K)

ρ c p :

Volumetric heat capacity (J/m3.K)

f l :

Liquid fraction

g :

Gravitational acceleration (m/s2)

H :

Height (mm)

Q :

Heat storage capacity (J)

q :

heat storage density (J/kg)

k :

Thermal conductivity (W/m.K)

L :

Latent heat of fusion (J/kg.k)

m :

Mass (kg)

p :

Pressure (Pa)

\(\dot {Q}\) :

Rate of heat transfer (W )

\(\dot {q}\) :

Rate of heat transfer density (W/kg)

S :

Source term in momentum equation

T :

Temperature (K)

t :

Time (sec)

u :

Velocity component in x −axis (m/s)

v :

Velocity component in y −axis (m/s)

W :

Width (mm)

c p :

Specific heat capacity (J/kg.K)

ΔH :

Fractional latent-heat (J/kg.K)

2D :

Two dimensional

φ :

Volume fraction

μ :

Viscosity (Pa.s)

β:

Thermal expansion coefficient (1/K)

HS :

Heat sink

hs :

Heat source

ini :

Initial

l :

Liquidus

m :

Melting

ncpcm :

Nanocomposite phase change material

np :

Nanoparticles

ref :

Reference

x :

x −axis

y :

y −axis

References

  1. Murshed SS, de Castro CN (2017) A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew Sust Energ Rev 78:821–833. https://doi.org/10.1016/j.rser.2017.04.112

    Article  Google Scholar 

  2. Pedram M, Nazarian S (2006) Thermal modeling, analysis, and management in VLSI circuits: Principles and methods. Proc IEEE 94(8):1487–1501. https://doi.org/10.1109/jproc.2006.879797

    Article  Google Scholar 

  3. Rathore PKS, Shukla SK (2021) Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: a state of the art review. Energy and Build 110799:236. https://doi.org/10.1016/j.enbuild.2021.110799

    Article  Google Scholar 

  4. Adibpour S, Raisi A, Ghasemi B, Sajadi A, Rosengarten G (2021) Experimental investigation of the performance of a sun tracking photovoltaic panel with phase change material. Renew Energy 165:32333. https://doi.org/10.1016/j.renene.2020.11.022

    Article  Google Scholar 

  5. Royo P, Acevedo L, Arnal ÁJ, Diaz-ramírez M, García-armingol T, Ferreira VJ, Ferreira G, López-Sabirón AM (2021) Decision support system of innovative high-temperature latent heat storage for waste heat recovery in the energy-intensive industry. Energies 14(2):365. https://doi.org/10.3390/en14020365

    Article  Google Scholar 

  6. Bentivoglio F, Rouge S, Soriano O, de Sousa AT (2021) Design and operation of a 180 kWh PCM heat storage at the flaubert substation of the grenoble urban heating network. Appl Therm Eng 185:116402. https://doi.org/10.1016/j.applthermaleng.2020.116402

    Article  Google Scholar 

  7. Guelpa E (2021) Impact of thermal masses on the peak load in district heating systems. Energy 214:118849. https://doi.org/10.1016/j.energy.2020.118849

    Article  Google Scholar 

  8. Qin D, Liu Z, Zhou Y, Yan Z, Chen D, Zhang G (2021) Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation. Renew Energy 167:542–557. https://doi.org/10.1016/j.renene.2020.11.113

    Article  Google Scholar 

  9. Ali HM, Arshad A, Janjua MM, Baig W, Sajjad U (2018) Thermal performance of LHSU for electronics under steady and transient operations modes. Int J Heat Mass Transfer 127:1223–1232. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.120

    Article  Google Scholar 

  10. Kalbasi R (2021) Introducing a novel heat sink comprising PCM and air - adapted to electronic device thermal management. Int J Heat Mass Transfer 169:120914. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120914

    Article  Google Scholar 

  11. Arshad A, Jabbal M, Yan Y (2020) Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (nePCMs) for thermal management of microelectronics. Energy Convers Manag 112444:205. https://doi.org/10.1016/j.enconman.2019.112444

    Article  Google Scholar 

  12. Arshad A, Jabbal M, Yan Y (2020) Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Appl Therm Eng 115999:181. https://doi.org/10.1016/j.applthermaleng.2020.115999

    Article  Google Scholar 

  13. Kibria M, Anisur M, Mahfuz M, Saidur R, Metselaar I (2015) A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manag 95:69–89. https://doi.org/10.1016/j.enconman.2015.02.028

    Article  Google Scholar 

  14. Arshad A, Jabbal M, Shi L, Darkwa J, Weston NJ, Yan Y (2020) Development of tio2/rt–35hc based nanocomposite phase change materials (ncpcms) for thermal management applications, Sustainable Energy Technologies and Assessments, 100865. https://doi.org/10.1016/j.seta.2020.100865

  15. Lin SC, Al-Kayiem HH (2012) Thermophysical properties of nanoparticles-phase change material compositions for thermal energy storage. Appl Mech Mater 232:127–131. https://doi.org/10.4028/www.scientific.net/amm.232.127

    Article  Google Scholar 

  16. Lin SC, Al-Kayiem HH (2016) Evaluation of copper nanoparticles – paraffin wax compositions for solar thermal energy storage. Sol Energy 132:267–278. https://doi.org/10.1016/j.solener.2016.03.004

    Article  Google Scholar 

  17. Colla L, Ercole D, Fedele L, Mancin S, Manca O, Bobbo S Nano-phase change materials for electronics cooling applications, Journal of Heat Transfer 139 (5). https://doi.org/10.1115/1.4036017

  18. Bondareva NS, Buonomo B, Manca O, Sheremet MA (2018) Heat transfer inside cooling system based on phase change material with alumina nanoparticles. Appl Therm Eng 144:972–981. https://doi.org/10.1016/j.applthermaleng.2018.09.002

    Article  Google Scholar 

  19. Bondareva NS, Buonomo B, Manca O, Sheremet MA (2019) Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence. Int J Heat Mass Transfer 135:1063–1072. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.045

    Article  Google Scholar 

  20. Mahdi JM, Nsofor EC (2016) Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Appl Therm Eng 108:596–604. https://doi.org/10.1016/j.applthermaleng.2016.07.130

    Article  Google Scholar 

  21. Ebrahimi A, Dadvand A (2015) Simulation of melting of a nano-enhanced phase change material (nePCM) in a square cavity with two heat source–sink pairs. Alex Eng J 54(4):1003–1017. https://doi.org/10.1016/j.aej.2015.09.007

    Article  Google Scholar 

  22. Hosseinizadeh S, Darzi AR, Tan F (2012) Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. Int J Therm Sci 51:77–83. https://doi.org/10.1016/j.ijthermalsci.2011.08.006

    Article  Google Scholar 

  23. Arshad A, Jabbal M, Sardari PT, Bashir MA, Faraji H, Yan Y (2020) Transient simulation of finned heat sinks embedded with PCM for electronics cooling. Therm Sci Eng Prog 100520:18. https://doi.org/10.1016/j.tsep.2020.100520

    Article  Google Scholar 

  24. Arshad A, Ali HM, Yan W. -M., Hussein AK, Ahmadlouydarab M (2018) An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material. Appl Therm Eng 132:52–66. https://doi.org/10.1016/j.applthermaleng.2017.12.066

    Article  Google Scholar 

  25. Arshad A, Ali HM, Khushnood S, Jabbal M (2018) Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: Effect of pin-fin diameter. Int J Heat Mass Transfer 86872:117. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.008

    Article  Google Scholar 

  26. Arshad A, Ali HM, Ali M, Manzoor S (2017) Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction. Appl Therm Eng 112:143–155. https://doi.org/10.1016/j.applthermaleng.2016.10.090

    Article  Google Scholar 

  27. Faraji H, Faraji M, Alami ME (2019) Numerical survey of the melting driven natural convection using generation heat source: Application to the passive cooling of electronics using nano-enhanced phase change material, Journal of Thermal Science and Engineering Applications 12 (2). https://doi.org/10.1115/1.4044167

  28. Faraji H, Faraji M, Alami ME, Hariti Y, Arshad A, Hader A, Benkaddour A Cooling of recent microprocessors by the fusion of nano-enhanced phase change materials, Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.04.342

  29. Mahdi JM, Mohammed HI, Hashim ET, Talebizadehsardari P, Nsofor EC (2020) Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system. Appl Energy 113993:257. https://doi.org/10.1016/j.apenergy.2019.113993

    Article  Google Scholar 

  30. Mahdi JM, Nsofor EC (2017) Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination. Int J Heat Mass Transfer 109:417–427. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.016

    Article  Google Scholar 

  31. Arıcı M, Tütüncü E, Yıldız Ç, Li D (2020) Enhancement of PCM melting rate via internal fin and nanoparticles. Int J Heat Mass Transfer 119845:156. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119845

    Article  Google Scholar 

  32. Vajjha RS, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transfer 52(21-22):4675–4682. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027

    Article  MATH  Google Scholar 

  33. Arasu AV, Mujumdar AS (2012) Numerical study on melting of paraffin wax with al2o3 in a square enclosure. Int Commun Heat Mass Transfer 39(1):8–16. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.013

    Article  Google Scholar 

  34. Levin M, Miller M (1981) Maxwell a treatise on electricity and magnetism. Uspekhi Fizicheskikh Nauk 135(3):425–440

    Article  MathSciNet  Google Scholar 

  35. Bruggeman DAG (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann Phys 416(7):636–664. https://doi.org/10.1002/andp.19354160705

    Article  Google Scholar 

  36. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191. https://doi.org/10.1021/i160003a005

    Article  Google Scholar 

  37. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043. https://doi.org/10.1002/aic.690490420

    Article  Google Scholar 

  38. Al-Maghalseh M, Mahkamov K (2018) Methods of heat transfer intensification in PCM thermal storage systems: Review paper. Renew Sust Energ Rev 92:62–94. https://doi.org/10.1016/j.rser.2018.04.064

    Article  Google Scholar 

  39. Mahdi JM, Lohrasbi S, Ganji DD, Nsofor EC (2018) Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. Int J Heat Mass Transfer 124:663–676. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.095

    Article  Google Scholar 

  40. Khan Z, Khan ZA, Sewell P (2019) Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application. Int J Heat Mass Transfer 118619:144. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118619

    Article  Google Scholar 

  41. Bondareva NS, Gibanov NS, Sheremet MA (2020) Computational study of heat transfer inside different PCMs enhanced by al2o3 nanoparticles in a copper heat sink at high heat loads. Nanomaterials 10 (2):284. https://doi.org/10.3390/nano10020284

    Article  Google Scholar 

  42. Vajjha RS, Das DK, Mahagaonkar BM (2009) Density measurement of different nanofluids and their comparison with theory. Pet Sci Technol 27(6):612–624. https://doi.org/10.1080/10916460701857714

    Article  Google Scholar 

  43. Xiong T, Zheng L, Shah KW (2020) Nano-enhanced phase change materials (nePCMs): A review of numerical simulations. Appl Therm Eng 115492:178. https://doi.org/10.1016/j.applthermaleng.2020.115492

    Article  Google Scholar 

  44. Li Z, Shahsavar A, Al-Rashed AA, Talebizadehsardari P (2020) Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system. Appl Therm Eng 114777:167. https://doi.org/10.1016/j.applthermaleng.2019.114777

    Article  Google Scholar 

  45. Mohammed HI, Talebizadehsardari P, Mahdi JM, Arshad A, Sciacovelli A, Giddings D (2020) Improved melting of latent heat storage via porous medium and uniform joule heat generation. J Energy Storage 101747:31. https://doi.org/10.1016/j.est.2020.101747

    Article  Google Scholar 

  46. Leonard B (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19(1):59–98. https://doi.org/10.1016/0045-7825(79)90034-3

    Article  MATH  Google Scholar 

  47. Patankar S (2018) Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation; McGraw-Hill Book Company, New York

    Book  Google Scholar 

Download references

Acknowledgements

This research is facilitated by the University of Nottingham, UK research infrastructure. The first author (Adeel Arshad) acknowledges the University of Nottingham for awarding him the Faculty of Engineering Research Excellence PhD Scholarship to pursue a Ph.D. research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Yan.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest regarding this research article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, A., Jabbal, M., Faraji, H. et al. Numerical study of nanocomposite phase change material-based heat sink for the passive cooling of electronic components. Heat Mass Transfer (2021). https://doi.org/10.1007/s00231-021-03065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00231-021-03065-2

Keywords

Navigation