Skip to main content
Log in

The Solutions on One-Dimensional Dirac Oscillator with Energy-Dependent Potentials and Their Effects on the Shannon and Fisher Quantities of Quantum Information Theory

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we focus, at first, on the exact solutions on the one-dimensional Dirac oscillator with the energy-dependent potentials. Then, the influence of these solutions on the Shannon entropy and Fisher information, well-known in quantum information, has been studied. In this direction, we concentrated on the determination of the position and momentum information entropies for the low-lying states n=0,1,2. Some interesting features of both Fisher and Shannon densities as well as the probability densities are demonstrated. Finally, the Fisher uncertainty relation, Stam, Cramer–Rao and Bialynicki–Birula–Mycielski (BBM) inequalities have been checked and their comparison with the regarding results have been reported. We showed that the BBM inequality is still valid in the form \(S_{x}+S_{p}\ge 1+\text {ln}\pi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Snyder, J. Weinberg, Phys. Rev. 57, 307 (1940)

    Article  ADS  Google Scholar 

  2. I. Schiff, H. Snyder, J. Weinberg, Phys. Rev. 57, 315 (1940)

    Article  ADS  Google Scholar 

  3. A.M. Green, Nucl. Phys. 33, 218 (1962)

    Article  Google Scholar 

  4. W. Pauli, Z. Physik. 601, 43 (1927)

    Google Scholar 

  5. H.A. Bethe, E.E. Salpeter, Quantum theory of One- and Two-Electron Systems, Handbuch der Physik, Band XXXV, Atome I (Springer, Berlin-Göttingen-Heidelberg, 1957)

  6. R. Yekken, R.J. Lombard, J. Phys. A: Math. Theor. 43 (2010)

  7. V.A. Rizov, H. Sazdjian, I.T. Todorov, Ann. Phys. 165, 59 (1985)

    Article  ADS  Google Scholar 

  8. H. Sazdjian, J. Math. Phys. 29, 1620 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Formanek, J. Mares, R. Lombard, Czech. J. Phys. 54, 289 (2004)

    Article  ADS  Google Scholar 

  10. J. Garcia-Martinez, J. Garcia-Ravelo, J.J. Pena, A. Schulze-Halberg, Phys. Lett. A. 373, 3619 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Lombard, An-Najah-Univ. J. Res. (N. Sc.). 25, 49 (2011)

  12. H. Hassanabadi, S. Zarrinkamar, A.A. Rajabi, Commun. Theor. Phys. 55, 541 (2011)

    Article  ADS  Google Scholar 

  13. H. Hassanabadi, E. Maghsoodi, R. Oudi, S. Zarrinkamar, H. Rahimov, Eur. Phys. J. Plus. 127, 120 (2012)

    Article  Google Scholar 

  14. R.J. Lombard, J. Mares, Phys. Lett. A. 373, 426 (2009)

    Article  ADS  Google Scholar 

  15. A. Boumali, S. Dilmi, S. Zare, H. Hassanabadi, Karbala Intl. J. Mod. Sci. 3, 191 (2017)

    Article  Google Scholar 

  16. A. Boumali, M. Labidi, Mod. Phys. Lett. A 33, 1850033 (2018)

    Article  ADS  Google Scholar 

  17. A. Schulze-Halberg, Cent. Eur. J. Phys. 9, 57 (2011)

    Google Scholar 

  18. R.J. Lombard, J. Mares, C.Volpe, arXiv:hep-ph/0411067v1

  19. H. Hassanabadi, S. Zarrinkamar, H. Hamzavi, A.A. Rajabi, Arab. J. Sci. Eng. 37, 209 (2012)

    Article  MathSciNet  Google Scholar 

  20. A. Benchikha, L. Chetouani, Mod. Phys. Lett. A 28, 1350079 (2013)

    Article  ADS  Google Scholar 

  21. A. Benchikha, L. Chetouani, Cent. Eur. J. Phys. 12, 392–405 (2014)

    Google Scholar 

  22. D. Itô, K. Mori, E. Carriere, Nuovo Cimento A 51, 1119 (1967)

    Article  ADS  Google Scholar 

  23. M. Moshinsky, A. Szczepaniak, J. Phys. A Math. Gen. 22, L817 (1989)

    Article  ADS  Google Scholar 

  24. R.P. Martinez-y-Romero, A.L. Salas-Brito, J. Math. Phys. 33, 1831 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Moreno, A. Zentella, J. Phys. A Math. Gen. 22, L821 (1989)

    Article  ADS  Google Scholar 

  26. J. Benitez, P.R. Martinez y Romero , H.N. Nunez-Yepez, A.L. Salas-Brito, Phys. Rev. Lett. 64, 1643 (1990)

  27. C. Quesne, V.M. Tkachuk, J. Phys. A Math. Gen 41, 1747–65 (2005)

    Article  ADS  Google Scholar 

  28. A. Boumali, H. Hassanabadi, Eur. Phys. J. Plus. 128, 124 (2013)

    Article  Google Scholar 

  29. A. Boumali, H. Hassanabadi, Z. Naturforschung A. 70, 619–627 (2015)

    Article  ADS  Google Scholar 

  30. A. Boumali, EJTP 12(32), 1–10 (2015)

    Google Scholar 

  31. A. Boumali, Phys. Scr. 90 (2015)

  32. P. Strange, L.H. Ryder, Phys. Lett. A 380, 3465–3468 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Franco-Villafane, E. Sadurni, S. Barkhofen, U. Kuhl, F. Mortessagne, T.H. Selig- man, Phys. Rev. Lett. 111, 170405 (2013)

  34. B.R. Frieden, Am. J. Phys. 57, 1004 (1989)

    Article  ADS  Google Scholar 

  35. B.R. Frieden, Phys. Rev. A. 41, 4265 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  36. B.R. Frieden, Opt. Lett. 14, 199 (1989)

    Article  ADS  Google Scholar 

  37. B.R. Frieden, Phys. A. 180, 359–385 (1992)

    Article  MathSciNet  Google Scholar 

  38. B.R. Frieden, B.H. Soffer, Phys. Rev. E. 52, 2274–2286 (1995)

    Article  ADS  Google Scholar 

  39. M.T. Martin, F. Pennini, A. Plastino, Phys. Lett. A 256, 173–180 (1999)

    Article  ADS  Google Scholar 

  40. D.X. Macedo, I. Guedes, Phys. A. 434, 211–219 (2015)

    Article  MathSciNet  Google Scholar 

  41. X.D. Song, S.H. Dong, Y. Zhang, Chin. Phys. B 25 (2016)

  42. G.H. Sun, S.H. Dong, Phys. Scr. 87 (2013)

  43. G. Yañez-Navarro, G.H. Sun, T. Dytrych, K.D. Launey, S.H. Dong, J.P. Draayer, Ann. Phys. 348, 153–160 (2014)

    Article  ADS  Google Scholar 

  44. S.G. Hua, D. Popov, O.C. Nieto, D.S. Hai, Chin. Phys. B 24 (2015)

  45. J. Yu, S.H. Dong, Phys. Lett. A 325, 194–198 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Yu, S.H. Dong, Phys. Lett. A 322, 290–297 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  47. S.H. Dong, J.J. Pena, C.P. Garcia, J.G. Ravelo, Mod. Phys. Lett. A 22, 1039–1045 (2007)

    Article  ADS  Google Scholar 

  48. P.A. Bouvrie, J.C. Angulo, J.S. Dehesa, Phys. A 390, 2215–2228 (2011)

    Article  MathSciNet  Google Scholar 

  49. J.S. Dehesa, S. López-Rosa, B. Olmos, R.J. Yáñez, J. Math. Phys. 47 (2006)

  50. A.J. Stam, Inf. Control 2, 101 (1959)

    Article  Google Scholar 

  51. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, NewYork, 1991)

    Book  MATH  Google Scholar 

  52. O. Johnson, Information Theory and the Central Limit Theorem (Imperial College Press, London, 2004)

    Book  MATH  Google Scholar 

  53. I.B. Birula, J. Mycielski, Commun. Math. Phys. 44, 129–132 (1975)

    Article  ADS  Google Scholar 

  54. J. S. Dehesa, R. G-Férez, P. S-Moreno, J. Phys. A Math. Theor. 40,1845 (2007)

  55. W. Greiner, Relativistic Quantum Mechanics Wave Equations, 3rd edn. (Springer, 2000)

  56. S. Flugge, Practical Qunatum Mechanics (Springer, Berlin, 1974)

    Google Scholar 

  57. C. Quimbay, P. Strange, arXiv:1311.2021 (2013)

  58. C. Quimbay, P. Strange, arXiv:1312.5251 (2013)

Download references

Acknowledgements

The authors would like to thank Prof Lyazid Chetouani, University of Constantine, Algeria, for his personal communication about the modified product scalar in the Dirac equation. This work was fully supported by the ‘’ Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT)’’ of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Boumali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumali, A., Labidi, M. The Solutions on One-Dimensional Dirac Oscillator with Energy-Dependent Potentials and Their Effects on the Shannon and Fisher Quantities of Quantum Information Theory. J Low Temp Phys 204, 24–47 (2021). https://doi.org/10.1007/s10909-021-02596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02596-6

Keywords

Navigation