Skip to main content
Log in

Nonreal Zeros of Polynomials in a Polynomial Sequence Satisfying a Three-Term Recurrence Relation

  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

This paper discusses the location of zeros of polynomials in a polynomial sequence \(\{P_{n}(z)\}_{n=1}^{\infty}\) generated by a three-term recurrence relation of the form \(P_{n}(z)+B(z)P_{n-1}(z)+A(z)P_{n-k}(z)=0\) with \(k>2\) and the standard initial conditions \(P_{0}(z)=1\), \(P_{-1}(z)=P_{-k+1}(z)=0,\) where \(A(z)\) and \(B(z)\) are arbitrary coprime real polynomials. We show that there always exist polynomials in \(\{P_{n}(z)\}_{n=1}^{\infty}\) with nonreal zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. G. Gasper and M. Rahman, Basic Hypergoemetric Series, (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  2. G. V. Milovanovic, ‘‘Orthogonal polynomial systems and some applications,’’ in Inner Product Spaces and Applications, Ed. by T. M. Rassias (Addison Wesley Longman, Harlow 1997), Vol. 376, pp. 115–182.

    Google Scholar 

  3. S. Beraha, J. Kahane, and N. J. Weiss, ‘‘Limits of zeroes of recursively defined polynomials,’’ Proc. Natl. Acad. Sci. U. S. A. 72, 4209 (1975). https://doi.org/10.1073/pnas.72.11.4209

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Beraha, J. Kahane, and N. J. Weiss, ‘‘Limits of zeros of recursively defined families of polynomials,’’ in Studies in Foundations and Combinatorics, Advances in Mathematics Supplementary Studies, Ed. by G. C. Rota (Academic Press, New York, 1978), Vol. 1, pp. 213–232.

    Google Scholar 

  5. K. Tran, ‘‘Connections between discriminants and the root distribution of polynomials with rational generating function,’’ J. Math. Anal. Appl. 410, 330–340 (2014). https://doi.org/10.1016/j.jmaa.2013.08.025

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Tran, ‘‘The root distribution of polynomials with a three-term recurrence,’’ J. Math. Anal. Appl. 421, 878–892 (2015). https://doi.org/10.1016/j.jmaa.2014.07.066

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Ndikubwayo, ‘‘Criterion of reality of zeros in a polynomial sequence satisfying a three-term recurrence relation,’’ Czech. Math. J. 70, 793–804 (2020). https://doi.org/10.21136/CMJ.2020.0535-18

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Bøgvad, I. Ndikubwayo, and B. Shapiro, ‘‘Generalizing Tran’s conjecture,’’ Electron. J. Math. Anal. Appl. 8, 346–351 (2020).

    MathSciNet  MATH  Google Scholar 

  9. K. Tran and A. Zumba, ‘‘Zeros of polynomials with four-term recurrence,’’ Involve, J. Math. 11, 501–518 (2018).

    MATH  Google Scholar 

  10. I. Ndikubwayo, ‘‘Around a conjecture of K. Tran,’’ Electron. J. Math. Anal. Appl. 8, 16–37 (2020).

    MathSciNet  MATH  Google Scholar 

  11. K. Tran and A. Zumba, ‘‘Zeros of polynomials with four-term recurrence and linear coefficients,’’ Ramanujan J. (2020). https://doi.org/10.1007/s11139-020-00263-0.22

  12. J. Borcea and P. Brändén, ‘‘Pólya–Schur master theorems for circular domains and their boundaries,’’ Ann. Math. 2 (170), 465–492 (2009). https://doi.org/10.4007/annals.2009.170.465

    Article  MATH  Google Scholar 

  13. K. Driver and M. E. Muldoon, ‘‘Common and interlacing zeros of families of Laguerre polynomials,’’ J. Approx. Theory 193, 89–98 (2015). https://doi.org/10.1016/j.jat.2013.11.013

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Dilcher and K. B. Stolarsky, ‘‘Zeros of the Wronskian of a polynomial,’’ J. Math. Anal. Appl. 162, 430–451 (1991). https://doi.org/10.1016/0022-247X(91)90160-2

    Article  MathSciNet  MATH  Google Scholar 

  15. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Birkhäuser, Boston, 1994).

    Book  Google Scholar 

  16. N. Biggs, ‘‘Equimodular curves,’’ Discrete Math. 259, 37–57 (2002). https://doi.org/10.1016/S0012-365X(02)00444-2

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Simon, Basic Complex Analysis. A Comprehensive Course in Analysis, Vol. 2A, (Am. Math. Soc., Providence, RI, 2015).

Download references

ACKNOWLEDGMENTS

I am indebted to my advisor Professor Boris Shapiro for the discussions and comments. I am grateful to Dr. Alex Samuel Bamunoba for the fruitful discussions and guidance. Thanks go to the anonymous referee for careful reading this work and giving insightful comments and suggestions.

Funding

The work is supported by the Sida Phase-IV bilateral program with Makerere University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ndikubwayo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndikubwayo, I. Nonreal Zeros of Polynomials in a Polynomial Sequence Satisfying a Three-Term Recurrence Relation. J. Contemp. Mathemat. Anal. 56, 87–93 (2021). https://doi.org/10.3103/S1068362321020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362321020072

Keywords:

Navigation