Skip to main content
Log in

Abstract

The following Artin theorem about alternative linear algebras defined on the commutative, associative ring with unity is well-known: in an alternative linear algebra, if \((a,b,c)=0\), then the subalgebra generated by the elements \(a\), \(b\), and \(c\) is associative. In this paper a wide generalization of this classical result is proposed using the concepts of hyperidentity and coidentity. The corresponding universal algebras are referred to as \(g\)-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. J. Higgins, ‘‘Groups with multiple operators,’’ Proc. London Math. Soc. 6, 366–416 (1956). https://doi.org/10.1112/plms/s3-6.3.366

    Article  MathSciNet  MATH  Google Scholar 

  2. A. G. Kurosh, Lectures on General Algebra (Chelsea, New York, 1963).

    Google Scholar 

  3. A. G. Kurosh, ‘‘Multioperator rings and algebras,’’ Russ. Math. Surv. 24 (1), 1–13 (1969).

    Article  MathSciNet  Google Scholar 

  4. K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, and A. I. Shirshov, Rings That are Nearly Associative (Academic Press, New York, 1982).

    Google Scholar 

  5. S. Burris and H. P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, 1981).

    Book  Google Scholar 

  6. C. C. Chang and H. J. Keisler, Model Theory (North-Holland, Amsterdam, 1973).

    MATH  Google Scholar 

  7. A. Church, Introduction to Mathematical Logic, 1 (Princeton Univ. Press, Princeton, 1956).

    MATH  Google Scholar 

  8. A. I. Mal’tsev, ‘‘Some questions of the theory of classes of models’’ in Proc. IVth All-Union Mathematical Congress, 1963, Vol. 1, pp. 169–198 (1963).

  9. A. I. Mal’tsev, Algebraic Systems (Springer-Verlag, Berlin, 1973).

    Book  Google Scholar 

  10. J. Koppitz and K. Denecke, \(M\) -Solid Varieties of Algebras (Springer, Boston, MA, 2006). https://doi.org/10.1007/0-387-30806-7

  11. Yu. M. Movsisyan, Introduction to the Theory of Algebras With Hyperidentities (Yerevan State Univ. Press, Yerevan, 1986).

    MATH  Google Scholar 

  12. Yu. M. Movsisyan, Hyperidentities and Hypervarieties in Algebras (Yerevan State Univ. Press, Yerevan, 1990).

    MATH  Google Scholar 

  13. Yu. M. Movsisyan, ‘‘Hyperidentities in algebras and varieties,’’ Russ. Math. Surv. 53 (1), 57–108 (1998). https://doi.org/10.1070/RM1998v053n01ABEH000009

    Article  MATH  Google Scholar 

  14. Yu. M. Movsisyan, ‘‘Hyperidentities and Related Concepts, I,’’ Arm. J. Math., 9, 146–222 (2017).

    MathSciNet  MATH  Google Scholar 

  15. Yu. M. Movsisyan, ‘‘Hyperidentities and Related Concepts, II,’’ Arm. J. Math. 4, 1–85 (2018).

    MathSciNet  MATH  Google Scholar 

  16. Yu. M. Movsisyan, A. B. Romanowska, and J. D. H. Smith, ‘‘Superproducts, hyperidentities, and algebraic structures of logic programming,’’ J. Combin. Math. Combin. Comput. 58, 101–111 (2006).

    MathSciNet  MATH  Google Scholar 

  17. General Algebra 2, Ed. by L. A. Skornyakov (Nauka, Moscow, 1991).

    Google Scholar 

  18. Yu. M. Movsisyan, ‘‘Coidentities in algebras,’’ Dokl. Akad. Nauk Arm. SSR 77, 51–54 (1983).

    MATH  Google Scholar 

  19. B. I. Plotkin, Automorphisms Groups of Algebraic Systems (Nauka, Moscow, 1966).

    Google Scholar 

  20. Yu. M. Movsisyan, ‘‘Hyperidentities and hypervarieties,’’ Sci. Math. Jpn. 54, 595–640 (2001).

    MathSciNet  MATH  Google Scholar 

  21. W. E. Barnes, ‘‘On \(\Gamma\)-rings of Nobusawa,’’ Pac. J. Math. 18, 411–422 (1966). https://doi.org/10.2140/pjm.1966.18.411

    Article  MATH  Google Scholar 

  22. V. D. Belousov, ‘‘Systems of quasigroups with generalized identities,’’ Russ. Math. Surv. 20 (1), 75–143 (1965). https://doi.org/10.1070/RM1965v020n01ABEH004140

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Kehayopulu, ‘‘On regular duo po-\(\Gamma\)-semigroups,’’ Math. Slovaca 61, 871 (2011). https://doi.org/10.2478/s12175-011-0054-x

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Luh, ‘‘On the theory of simple \(\Gamma\)-rings,’’ Mich. Math. J. 16, 65–75 (1969).

    Article  Google Scholar 

  25. N. Nobusawa, ‘‘On a generalization of the ring theory,’’ Osaka J. Math. 1, 81–89 (1964). https://doi.org/10.18910/12354

    Article  MathSciNet  MATH  Google Scholar 

  26. S. K. Sardar, S. Gupta, and K. P. Shum, ‘‘\(\Gamma\)-semigroups with unities and Morita equivalence for monoids,’’ Eur. J. Pure Appl. Math. 6 (1), 1–10 (2013).

    MathSciNet  Google Scholar 

  27. M. K. Sen, ‘‘On \(\Gamma\)-semigroup,’’ in Proc. Int. Conf. Algebra and Its Applications, New Delhi, 1981, pp. 301–308.

  28. M. K. Sen and N. K. Saha, ‘‘On \(\Delta\)-semigroup I.,’’ Bull. Calcutta Math. Soc. 78, 180–186 (1986).

    MathSciNet  MATH  Google Scholar 

  29. M. K. Sen and S. Chattopadhyay, ‘‘\(\Gamma\)-Semigroups, a survey,’’ in Algebra and Its Applications (2016).

  30. A. Seth, ‘‘\(\Gamma\)-group congruences on regular \(\Gamma\)-semigroups,’’ Int. J. Math. Math. Sci. 15 (1), 103–106 (1992).

    Article  Google Scholar 

  31. A. V. Zhuchok, Relatively Free Doppelsemigroups (Potsdam Univ. Press, Potsdam, 2018).

    MATH  Google Scholar 

  32. A. V. Zhuchok, Y. V. Zhuchok, and J. Koppitz, ‘‘Free rectangular doppelsemigroups,’’ J. Algebra Its Appl. 19, 2050205 (2020). https://doi.org/10.1142/S0219498820502059

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu. M. Movsisyan, ‘‘Biprimitive classes of algebras of second degree,’’ Mat. Issled. 9, 70–84 (1974).

    MathSciNet  Google Scholar 

  34. R. H. Bruck and E. Kleinfeld, ‘‘The structure of alternative division rings,’’ Proc. Am. Math. Soc. 2, 878–890 (1951). https://doi.org/10.1090/S0002-9939-1951-0045099-9

    Article  MathSciNet  MATH  Google Scholar 

  35. I. R. Hentzel and L. A. Peresi, ‘‘The nucleus of the free alternative algebra,’’ Exp. Math. 15, 445–454 (2006). https://doi.org/10.1080/10586458.2006.10128972

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is partially supported by the State Committee of the Republic of Armenia, projects nos. 10-3/1-41 and 21T-1A213.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. M. Movsisyan or M. A. Yolchyan.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movsisyan, Y.M., Yolchyan, M.A. A Generalization of the Artin Theorem. J. Contemp. Mathemat. Anal. 56, 104–111 (2021). https://doi.org/10.3103/S1068362321020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362321020060

Keywords:

Navigation