Skip to main content
Log in

Heterometallic 3d/4f-Metal Complexes: Structure and Magnetism

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the past two decades, tremendous progress has been made in the field of single-molecule magnets (SMMs), which not only achieves breakthroughs in various key indicators (flipping energy barrier and hysteresis temperature), but also expands SMMs of various types (3d, 4f, 3d–4f and 5f) and different connection methods. Among the many different types of SMM mentioned above, the SMM based on the 4f metal center has made the biggest breakthrough. Introducing 3d metal ions into lanthanide complexes to form 3d–4f heterometallic complexes can promote strong magnetic exchange between multiple metal centers, resulting in magnetic properties different from 3d and 4f complexes. Therefore, the expansion of the structure and magnetic properties of 3d–4f heterometallic complexes can promote the progress in the field of SMM. In this review, we summarize the structure and magnetic properties of 3d–4f heterometallic complexes formed by different types of organic ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Reproduced from ref. [6]. Copyright 2013 Elsevier

Fig. 1

Copyright 2011 American Chemical Society (ACS)

Fig. 2

Copyright 2013 American Chemical Society (ACS)

Fig. 3

Reproduced from ref. [54]. Copyright 2015 Royal Society of Chemistry (RSC) (Color figure online)

Fig. 4

Reproduced from ref. [54]. Copyright 2015 Royal Society of Chemistry (RSC)

Fig. 5

Copyright 2016 American Chemical Society (ACS)

Fig. 6

Copyright 2017 American Chemical Society (ACS)

Fig. 7

Copyright 2018 American Chemical Society (ACS)

Fig. 8

Copyright 2018 American Chemical Society (ACS)

Fig. 9

Reproduced from ref. [58]. Copyright 2018 Royal Society of Chemistry (RSC) (Color figure online)

Fig. 10

Copyright 2019 American Chemical Society (ACS)

Fig. 11

Copyright 2019 American Chemical Society (ACS)

Fig. 12

Copyright 2019 American Chemical Society (ACS)

Fig. 13

Copyright 2020 American Chemical Society (ACS)

Fig. 14

Copyright 2016 American Chemical Society (ACS)

Fig. 15

Copyright 2016 American Chemical Society (ACS)

Fig. 16

Copyright 2017 American Chemical Society (ACS) (Color figure online)

Fig. 17

Reproduced from ref. [65]. Copyright 2019 Royal Society of Chemistry (RSC) (Color figure online)

Fig. 18

Copyright 2016 American Chemical Society (ACS)

Fig. 19

Copyright 2017 American Chemical Society (ACS)

Fig. 20

Copyright 2018 American Chemical Society (ACS)

Fig. 21

Copyright 2019 American Chemical Society (ACS)

Fig. 22

Copyright 2015 American Chemical Society (ACS) (Color figure online)

Fig. 23

Reproduced from ref. [74]. Copyright 2011 Royal Society of Chemistry (RSC) (Color figure online)

Fig. 24

Copyright 2012 American Chemical Society (ACS) (Color figure online)

Fig. 25

Reproduced from ref. [76]. Copyright 2013 Royal Society of Chemistry (RSC)

Fig. 26

Copyright 2013 American Chemical Society (ACS)

Fig. 27

Reproduced from ref. [78]. Copyright 2018 Royal Society of Chemistry (RSC)

Fig. 28

Reproduced from ref. [79]. Copyright 2019 Royal Society of Chemistry (RSC)

Fig. 29

Reproduced from ref. [80]. Copyright 2019 Royal Society of Chemistry (RSC)

Fig. 30

Copyright 2012 American Chemical Society (ACS)

Fig. 31

Copyright 2012 American Chemical Society (ACS)

Similar content being viewed by others

References

  1. J.-H. Jia, Q.-W. Li, Y.-C. Chen, J.-L. Liu, and M.-L. Tong (2019). Coord. Chem. Rev. 378, 365–381.

    Article  CAS  Google Scholar 

  2. Z. Zhu, M. Guo, X.-L. Li, and J. Tang (2019). Coord. Chem. Rev. 378, 350–364.

    Article  CAS  Google Scholar 

  3. B. Li, H.-M. Wen, Y. Cui, G. Qian, and B. Chen (2015). Prog. Polym. Sci. 48, 40–84.

    Article  CAS  Google Scholar 

  4. J. Long, Y. Guari, R.-A.-S. Ferreira, L.-D. Carlos, and J. Larionova (2018). Coord. Chem. Rev. 363, 57–70.

    Article  CAS  Google Scholar 

  5. Z. Luo, H.-L. Wang, Z. Zhu, T. Liu, X. Ma, H. Wang, H. Zou, and F. Liang (2020). Commun. Chem. 3, 30.

    Article  CAS  Google Scholar 

  6. P. Zhang, Y.-N. Guo, and J. Tang (2013). Coord. Chem. Rev. 257, 1728–1763.

    Article  CAS  Google Scholar 

  7. J.-L. Liu, Y.-C. Chen, F.-S. Guo, and M.-L. Tong (2014). Coord. Chem. Rev. 281, 26–49.

    Article  CAS  Google Scholar 

  8. C. Benelli and D. Gatteschi (2002). Chem. Rev. 102, 2369–2387.

    Article  CAS  PubMed  Google Scholar 

  9. F.-S. Guo, A.-K. Bar, and R.-A. Layfield (2019). Chem. Rev. 119, 8479–8505.

    Article  CAS  PubMed  Google Scholar 

  10. M. Feng and M.-L. Tong (2018). Chem. Eur. J. 24, 7574–7594.

    Article  CAS  PubMed  Google Scholar 

  11. J.-S. Miller, J.-C. Calabrese, H. Rommelmann, S.-R. Chittipeddi, J.-H. Zhang, W.-M. Reiff, A.-J. Epstein, and A.-J.-E, (1987). J. Am. Chem. Soc. 109, 769–781.

    Article  CAS  Google Scholar 

  12. R. Sessoli, D. Gatteschi, A. Caneschi, and M.-A. Novak (1993). Nature 365, 141–143.

    Article  CAS  Google Scholar 

  13. Z.-H. Zhu, H.-F. Wang, S. Yu, H.-H. Zou, H.-L. Wang, B. Yin, and F.-P. Liang (2020). Inorg. Chem. 59, 11640–11650.

    Article  CAS  PubMed  Google Scholar 

  14. H.-L. Wang, X.-F. Ma, Z.-H. Zhu, Y.-Q. Zhang, H.-H. Zou, and F.-P. Liang (2019). Inorg. Chem. Front. 6, 2906–2913.

    Article  CAS  Google Scholar 

  15. H.-L. Wang, J.-M. Peng, Z.-H. Zhu, K.-Q. Mo, X.-F. Ma, B. Li, H.-H. Zou, and F.-P. Liang (2019). Cryst. Growth Des. 19, 5369–5375.

    Article  CAS  Google Scholar 

  16. H.-L. Wang, Z.-H. Zhu, X.-F. Ma, H.-H. Zou, and F.-P. Liang (2019). Chem. Eur. J. 25, 10813–10817.

    Article  CAS  PubMed  Google Scholar 

  17. H.-L. Wang, X.-F. Ma, J.-M. Peng, Z.-H. Zhu, B. Li, H.-H. Zou, and F.-P. Liang (2019). Inorg. Chem. 58, 9169–9174.

    Article  CAS  PubMed  Google Scholar 

  18. Z.-H. Zhu, X.-F. Ma, H.-L. Wang, H.-H. Zou, K.-Q. Mo, Y.-Q. Zhang, Q.-Z. Yang, B. Li, and F.-P. Liang (2018). Inorg. Chem. Front. 5, 3155–3162.

    Article  CAS  Google Scholar 

  19. F.-S. Guo, B.-M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, and R.-A. Layfield (2018). Science 362, 1400–1403.

    Article  CAS  PubMed  Google Scholar 

  20. Y.-S. Ding, N.-F. Chilton, R.-E.-P. Winpenny, and Y.-Z. Zheng (2016). Angew. Chem. Int. Ed. 55, 16071–16074.

    Article  CAS  Google Scholar 

  21. C.-A.-P. Goodwin, F. Ortu, D. Reta, N.-F. Chilton, and D.-P. Mills (2017). Nature 548, 439–442.

    Article  CAS  PubMed  Google Scholar 

  22. G.-A. Craig and M. Murrie (2015). Chem. Soc. Rev. 44, 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  23. C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi (1997). Phys. Rev. Lett. 78, 4645–4648.

    Article  CAS  Google Scholar 

  24. H. Andres, R. Basler, A.-J. Blake, C. Cadiou, G. Chaboussant, C.-M. Grant, G. Hans-ulrich, M. Murrie, S. Parsons, C. Paulsen, F. Semadini, V. Villar, W. Wernsdorfer, and R.-E.-P. Winpenny (2002). Chem. Eur. J. 8, 4867–4876.

    Article  CAS  PubMed  Google Scholar 

  25. E.-C. Yang, D.-N. Hendrickson, W. Wernsdorfer, M. Nakano, L.-N. Zakharov, R.-D. Sommer, A.-L. Rheingold, M. Ledezma-Gairaud, and G. Christou (2002). J. Appl. Phys. 91, 7382.

    Article  CAS  Google Scholar 

  26. K. Liu, W. Shi, and P. Cheng (2015). Coord. Chem. Rev. 289–290, 74–122.

    Article  CAS  Google Scholar 

  27. L. Rosado Piquer, E.-C. Sañudo (2015). Dalton Trans. 44, 8771–8780.

  28. J. W. Sharples and D. Collison (2014). Coord. Chem. Rev. 260, 1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L.-K. Thompson and L.-N. Dawe (2015). Coord. Chem. Rev. 289, 13–31.

    Article  CAS  Google Scholar 

  30. N. Ishikawa, M. Sugita, T. Ishikawa, S.-Y. Koshihara, and Y. Kaizu (2003). J. Am. Chem. Soc. 125, 8694–8695.

    Article  CAS  PubMed  Google Scholar 

  31. S. Osa, T. Kido, N. Matsumoto, and N.-Re, Pochaba, A. Mrozinski, J, (2004). J. Am. Chem. Soc. 126, 420–421.

    Article  CAS  PubMed  Google Scholar 

  32. J.-L. Liu, J.-Y. Wu, Y.-C. Chen, V. Mereacre, A.-K. Powell, L. Ungur, L.-F. Chibotaru, X.-M. Chen, and M.-L. Tong (2014). Angew. Chem. Int. Ed. 53, 12966–12970.

    Article  CAS  Google Scholar 

  33. Z.-H. Zhu, H.-L. Wang, H.-H. Zou, and F.-P. Liang (2020). Dalton Trans. 49, 10708–10723.

    Article  CAS  PubMed  Google Scholar 

  34. K.-Q. Mo, Z.-H. Zhu, H.-L. Wang, X.-F. Ma, J.-M. Peng, H.-H. Zou, J. Bai, and F.-P. Liang (2019). Dalton Trans. 48, 16641–16649.

    Article  CAS  PubMed  Google Scholar 

  35. W.-L. Ou, M.-J. Li, H.-H. Zou, H.-L. Wang, and F.-P. Liang (2019). J. Clust. Sci. 30, 197–202.

    Article  CAS  Google Scholar 

  36. Q.-Z. Yang, M.-J. Zheng, H.-H. Zou, H.-L. Wang, D.-C. Liu, Y.-C. Liu, and F.-P. Liang (2019). J. Clust. Sci. 30, 25–30.

    Article  CAS  Google Scholar 

  37. H.-L. Wang, L.-B. Sheng, H.-H. Zou, K. Wang, B. Li, M.-S. Chen, and F.-P. Liang (2018). J. Clust. Sci. 29, 1313–1319.

    Article  CAS  Google Scholar 

  38. H.-B. Quan, L.-B. Sheng, H.-H. Zou, Z.-Y. Liu, D.-C. Liu, B. Li, M.-S. Chen, and F.-P. Liang (2018). J. Clust. Sci. 29, 75–81.

    Article  CAS  Google Scholar 

  39. X.-X. Fu, H.-L. Wang, H.-H. Zou, H.-B. Quan, B. Li, and F.-P. Liang (2017). J. Clust. Sci. 28, 3229–3239.

    Article  CAS  Google Scholar 

  40. P. Bag, A. Chakraborty, G. Rogez, and V. Chandrasekhar (2014). Inorg. Chem. 53, 6524–6533.

    Article  CAS  PubMed  Google Scholar 

  41. J. P. Costes, S. Titos-Padilla, I. Oyarzabal, T. Gupta, C. Duhayon, G. Rajaraman, and E. Colacio (2016). Inorg. Chem. 55, 4428–4440.

    Article  CAS  PubMed  Google Scholar 

  42. H.-S. Wang, C.-L. Yin, Z.-B. Hu, Y. Chen, Z.-Q. Pan, Y. Song, Y.-Q. Zhang, and Z.-C. Zhang (2019). Dalton Trans. 48, 10011–10022.

    Article  CAS  PubMed  Google Scholar 

  43. M.-J. Liu, K.-Q. Hu, C.-M. Liu, A.-L. Cui, and H.-Z. Kou (2017). Dalton Trans. 46, 6544–6552.

    Article  CAS  PubMed  Google Scholar 

  44. I.-A. Kühne, K. Griffiths, A.-J. Hutchings, O.-P.-E. Townrow, A. Eichhöfer, C.-E. Anson, G.-E. Kostakis, and A.-K. Powell (2017). Cryst. Growth Des. 17, 5178–5190.

    Article  CAS  Google Scholar 

  45. M.-Li, H. Wu, Q. Wei, H. Ke, B. Yin, S. Zhang, X. Lv, G. Xie, S. Chen (2018). Dalton Trans. 47, 9482–9491.

  46. S. Dhers, H.-L.-C. Feltham, M. Rouzières, R. Clérac, and S. Brooker (2016). Dalton Trans. 45, 18089–18093.

    Article  CAS  PubMed  Google Scholar 

  47. H.-L.-C. Feltham, R. Clérac, L. Ungur, L.-F. Chibotaru, A.-K. Powell, and S. Brooker (2013). Inorg. Chem. 52, 3236–3240.

    Article  CAS  PubMed  Google Scholar 

  48. L. Zhao, J. Wu, S. Xue, and J. Tang (2012). Chem Asian J. 7, 2419–2423.

    Article  CAS  PubMed  Google Scholar 

  49. P. Hu, X. Wang, C. Jiang, F. Yu, B. Li, G. Zhuang, and T. Zhang (2018). Inorg. Chem. 57, 8639–8645.

    Article  CAS  PubMed  Google Scholar 

  50. C.-M. Liu, D.-Q. Zhang, J.-B. Su, Y.-Q. Zhang, and D.-B. Zhu (2018). Inorg. Chem. 57, 11077–11086.

    Article  CAS  PubMed  Google Scholar 

  51. X.-C. Huang, C. Zhou, H.-Y. Wei, and X.-Y. Wang (2013). Inorg. Chem. 52, 7314–7316.

    Article  CAS  PubMed  Google Scholar 

  52. K.-C. Mondal, G.-E. Kostakis, Y. Lan, W. Wernsdorfer, C.-E. Anson, and A.-K. Powell (2011). Inorg. Chem. 50, 11604–11611.

    Article  CAS  PubMed  Google Scholar 

  53. V. Chandrasekhar, A. Dey, S. Das, M. Rouzières, and R. Clérac (2013). Inorg. Chem. 52, 2588–2598.

    Article  CAS  PubMed  Google Scholar 

  54. H.-H. Zou, L.-B. Sheng, F.-P. Liang, Z.-L. Chen, and Y.-Q. Zhang (2015). Dalton Trans. 44, 18544–18552.

    Article  CAS  PubMed  Google Scholar 

  55. J. Wu, L. Zhao, L. Zhang, X.-L. Li, M. Guo, and J. Tang (2016). Inorg. Chem. 55, 5514–5519.

    Article  CAS  PubMed  Google Scholar 

  56. H. Wu, M. Li, S. Zhang, H. Ke, Y. Zhang, G. Zhuang, W. Wang, Q. Wei, G. Xie, and S. Chen (2017). Inorg. Chem. 56, 11387–11397.

    Article  CAS  PubMed  Google Scholar 

  57. J.-W. Yang, Y.-M. Tian, J. Tao, P. Chen, H.-F. Li, Y.-Q. Zhang, P.-F. Yan, and W.-B. Sun (2018). Inorg. Chem. 57 (14), 8065–8077.

    Article  CAS  PubMed  Google Scholar 

  58. J. Wu, X.-L. Li, M. Guo, L. Zhao, Y.-Q. Zhang, and J. Tang (2018). Chem. Commun. 54, 1065–1068.

    Article  CAS  Google Scholar 

  59. J.-Y. Ge, Z. Chen, Y.-R. Qiu, D. Huo, Y.-Q. Zhang, P. Wang, and J.-L. Zuo (2019). Inorg. Chem. 58, 9387–9396.

    Article  CAS  PubMed  Google Scholar 

  60. A. Bhanja, R. Herchel, Z. Trávníček, and D. Ray (2019). Inorg. Chem. 58, 12184–12198.

    Article  CAS  PubMed  Google Scholar 

  61. H.-R. Wen, J.-J. Hu, K. Yang, J.-L. Zhang, S.-J. Liu, J.-S. Liao, and C.-M. Liu (2020). Inorg. Chem. 59, 2811–2824.

    Article  CAS  PubMed  Google Scholar 

  62. R. Wang, H. Wang, J. Wang, F. Bai, Y. Ma, L. Li, Q. Wang, B. Zhao, and P. Cheng (2020). CrystEngComm. 22, 2998–3004.

    Article  CAS  Google Scholar 

  63. S. Zhang, H. Li, E. Duan, Z. Han, L. Li, J. Tang, W. Shi, and P. Cheng (2016). Inorg. Chem. 55, 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  64. K.-R. Vignesh, S.-K. Langley, K.-S. Murray, and G. Rajaraman (2017). Inorg. Chem. 56, 2518–2532.

    Article  CAS  PubMed  Google Scholar 

  65. L. Rosado Piquer, S. Dey, L. Castilla-Amorós, S.-J. Teat, J. Cirera, G. Rajaraman, E.-C. Sañudo (2019). Dalton Trans. 48, 12440–12450.

  66. M. Zhu, L. Li, and J.-P. Sutter (2016). Inorg. Chem. Front. 3, 994–1003.

    Article  CAS  Google Scholar 

  67. X.-F. Wang, P. Hu, Y.-G. Li, and L.-C. Li (2015). Chem Asian J. 10, 325–328.

    Article  CAS  PubMed  Google Scholar 

  68. G. Novitchi, S. Shova, Y. Lan, W. Wernsdorfer, C. Train, and Verdazyl Radical (2016). Inorg. Chem. 55, 12122–12125.

    CAS  Google Scholar 

  69. M. Yang, J. Xie, Z. Sun, L. Li, and J.-P. Sutter (2017). Inorg. Chem. 56, 13482–13490.

    Article  CAS  PubMed  Google Scholar 

  70. H. Li, J. Sun, M. Yang, Z. Sun, J. Tang, Y. Ma, and L. Li (2018). Inorg. Chem. 57, 9757–9765.

    Article  CAS  PubMed  Google Scholar 

  71. A.-A. Patrascu, M. Briganti, S. Soriano, S. Calancea, R.-A. Allão Cassaro, F. Totti, M.-G.-F. Vaz, and M. Andruh (2019). Inorg. Chem. 58, 13090–13101.

    CAS  Google Scholar 

  72. X.-L. Li, F.-Y. Min, C. Wang, S.-Y. Lin, Z. Liu, and J. Tang (2015). Inorg. Chem. 54, 4337–4344.

    Article  CAS  PubMed  Google Scholar 

  73. a) V. Mereacre, A. Baniodeh, C.-E. Anson, A.-K. Powell, (2011). J. Am. Chem. Soc. 133, 15335–15337; b) S.-M.-T. Abtab, M.-C. Majee, M. Maity, J. Titiš, R. Boča, M. Chaudhury (2014). Inorg. Chem. 53, 1295–1306.

    Google Scholar 

  74. S.-K. Langley, N.-F. Chilton, B. Moubaraki, T. Hooper, E.-K. Brechin, M. Evangelisti, and K.-S. Murray (2011). Chem. Sci. 2, 1166.

    Article  CAS  Google Scholar 

  75. S.-K. Langley, N.-F. Chilton, L. Ungur, B. Moubaraki, L.-F. Chibotaru, and K.-S. Murray (2012). Inorg. Chem. 51 (21), 11873–11881.

    Article  CAS  PubMed  Google Scholar 

  76. H. Chen, C.-B. Ma, M.-Q. Hu, H.-M. Wen, H.-H. Cui, J.-Y. Liu, X.-W. Song, and C.-N. Chen (2013). Dalton Trans. 42 (14), 4908.

    Article  CAS  PubMed  Google Scholar 

  77. V. Chandrasekhar, P. Bag, M. Speldrich, J. van Leusen, and P. Kögerler (2013). Inorg. Chem. 52, 5035–5044.

    Article  CAS  PubMed  Google Scholar 

  78. S. Pei, Z. Hu, Z. Chen, S. Yu, B. Li, Y. Liang, D. Liu, D. Yao, and F. Liang (2018). Dalton Trans. 47, 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  79. H.-G. Zhang, Y.-C. Du, H. Yang, M.-Y. Zhuang, D.-C. Li, and J.-M. Dou (2019). Inorg. Chem. Front. 6, 1904–1908.

    Article  CAS  Google Scholar 

  80. H.-S. Wang, Q.-Q. Long, Z.-B. Hu, L. Yue, F.-J. Yang, C.-L. Yin, Z.-Q. Pan, Y.-Q. Zhang, and Y. Song (2019). Dalton Trans. 48, 13472–13482.

    Article  CAS  PubMed  Google Scholar 

  81. S.-M.-T. Abtab, M. Maity, K. Bhattacharya, E.-C. Sañudo, and M. Chaudhury (2012). Inorg. Chem. 51 (19), 10211–10221.

    Article  CAS  PubMed  Google Scholar 

  82. G.-J. Sopasis, A.-B. Canaj, A. Philippidis, M. Siczek, T. Lis, J.-R. O’Brien, M.-M. Antonakis, S. A. Pergantis, and C.-J. Milios (2012). Inorg. Chem. 51 (10), 5911–5918.

    Article  CAS  PubMed  Google Scholar 

  83. J. Wang, Q. Li, S. Wu, Y. Chen, R. Wan, G. Huang, Y. Liu, J. Liu, D. Reta, M. J. Giansiracusa, Z. Wang, N. F. Chilton, and M. Tong (2021). Angew. Chem. Int. Ed. 60 (10), 5299–5306.

    Article  CAS  Google Scholar 

  84. S.-G. Wu, Z.-Y. Ruan, G.-Z. Huang, J.-Y. Zheng, V. Vieru, G. Taran, J. Wang, Y.-C. Chen, J.-L. Liu, L. T. A. Ho, L. F. Chibotaru, W. Wernsdorfer, X.-M. Chen, and M.-L. Tong (2021). Chem 7 (4), 982–992.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22061005), Guangxi Natural Science Foundation (2020GXNSFAA159075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Hong Zhu or Hua-Hong Zou.

Ethics declarations

Conflict of interest:

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HL., Zhu, ZH., Peng, JM. et al. Heterometallic 3d/4f-Metal Complexes: Structure and Magnetism. J Clust Sci 33, 1299–1325 (2022). https://doi.org/10.1007/s10876-021-02084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02084-7

Keywords

Navigation