Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable quantum interference using a topological source of indistinguishable photon pairs

Abstract

Sources of quantum light, in particular correlated photon pairs that are indistinguishable for all degrees of freedom, are the fundamental resource for photonic quantum computation and simulation. Although such sources have been recently realized using integrated photonics, they offer limited ability to tune the spectral and temporal correlations between generated photons because they rely on a single component, such as a ring resonator. Here, we demonstrate a tunable source of indistinguishable photon pairs using dual-pump spontaneous four-wave mixing in a topological system comprising a two-dimensional array of resonators. We exploit the linear dispersion of the topological edge states to tune the spectral bandwidth (by about 3.5×), and thereby, to tune quantum interference between generated photons by tuning the two pump frequencies. We demonstrate energy−time entanglement and, using numerical simulations, confirm the topological robustness of our source. Our results could lead to tunable, frequency-multiplexed quantum light sources for photonic quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experimental setup.
Fig. 2: Tunability of the two-photon JSI.
Fig. 3: Indistinguishability of the generated photons.
Fig. 4: Energy−time entanglement between generated photons.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on reasonable request. Correspondence should be addressed to S.M. (mittals@umd.edu).

References

  1. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  2. Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    Article  ADS  Google Scholar 

  3. Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104 (2014).

    Article  ADS  Google Scholar 

  4. He, J. et al. Ultracompact quantum splitter of degenerate photon pairs. Optica 2, 779–782 (2015).

    Article  ADS  Google Scholar 

  5. Vernon, Z. et al. Scalable squeezed-light source for continuous-variable quantum sampling. Phys. Rev. Appl. 12, 064024 (2019).

    Article  ADS  Google Scholar 

  6. Zhao, Y. et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601 (2020).

    Article  ADS  Google Scholar 

  7. Zhang, Y. et al. Squeezed light from a nanophotonic molecule. Nat. Commun. 12, 2233 (2021).

    Article  ADS  Google Scholar 

  8. Dutt, A. et al. On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015).

    Article  ADS  Google Scholar 

  9. Vaidya, V. D. et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186 (2020).

  10. Pfister, O. Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B 53, 012001 (2019).

    Article  ADS  Google Scholar 

  11. Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  12. Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  13. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  14. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821 (2014).

    Article  ADS  Google Scholar 

  15. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).

    Article  ADS  Google Scholar 

  16. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  17. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  18. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907 (2011).

    Article  Google Scholar 

  19. Kraus, Y., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    Article  ADS  Google Scholar 

  20. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001 (2013).

    Article  ADS  Google Scholar 

  21. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  22. Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014).

    Article  ADS  Google Scholar 

  23. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    Article  ADS  Google Scholar 

  24. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Article  ADS  Google Scholar 

  25. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

  26. Lu, L., Gao, H. & Wang, Z. Topological one-way fiber of second Chern number. Nat. Commun. 9, 5384 (2018).

    Article  ADS  Google Scholar 

  27. Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

    Article  ADS  Google Scholar 

  28. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    Article  ADS  Google Scholar 

  29. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  30. Tambasco, J.-L. et al. Quantum interference of topological states of light. Sci. Adv. 4, eaat3187 (2018).

  31. Wang, Y. et al. Topological protection of two-photon quantum correlation on a photonic chip. Optica 6, 955–960 (2019).

    Article  ADS  Google Scholar 

  32. Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502 (2018).

    Article  ADS  Google Scholar 

  33. Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  34. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015 (1988).

    Article  ADS  Google Scholar 

  35. Leykam, D., Mittal, S., Hafezi, M. & Chong, Y. D. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett. 121, 023901 (2018).

    Article  ADS  Google Scholar 

  36. Mittal, S., Orre, V. V., Leykam, D., Chong, Y. D. & Hafezi, M. Photonic anomalous quantum Hall effect. Phys. Rev. Lett. 123, 043201 (2019).

    Article  ADS  Google Scholar 

  37. Chen, J., Lee, K. F. & Kumar, P. Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference. Phys. Rev. A 76, 031804 (2007).

    Article  ADS  Google Scholar 

  38. Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).

    Article  ADS  Google Scholar 

  39. Branning, D., Grice, W., Erdmann, R. & Walmsley, I. A. Interferometric technique for engineering indistinguishability and entanglement of photon pairs. Phys. Rev. A 62, 013814 (2000).

    Article  ADS  Google Scholar 

  40. Harder, G. An optimized photon pair source for quantum circuits. Opt. Expr. 21, 13975–13985 (2013).

    Article  ADS  Google Scholar 

  41. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).

  42. Helt, L. G., Yang, Z., Liscidini, M. & Sipe, J. E. Spontaneous four-wave mixing in microring resonators. Opt. Lett. 35, 3006–3008 (2010).

    Article  ADS  Google Scholar 

  43. Vernon, Z. et al. Truly unentangled photon pairs without spectral filtering. Opt. Lett. 42, 3638–3641 (2017).

    Article  ADS  Google Scholar 

  44. Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X 6, 041026 (2016).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Air Force Office of Scientific Research AFOSR-MURI grant FA9550-16-1-0323, Office of Naval Research ONR-MURI grant N00014-20-1-2325, Army Research Laboratory grant W911NF1920181, and NSF grant PHY1820938. We thank Q. Quraishi for providing the nanowire detectors.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and V.V.O. contributed equally. S.M. conceived and designed the experiment, and performed numerical simulations. V.V.O. and S.M. performed the measurements. E.A.G. contributed to source characterization. M.H. supervised the project. All authors contributed to analysing the data and writing the manuscript.

Corresponding author

Correspondence to Sunil Mittal.

Ethics declarations

Competing interests

A US provisional patent application (no. 63/028,468) has been filed based on the results reported in this manuscript.

Additional information

Peer review informationNature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures S1–S11, Supplementary discussion in sections S1–S11

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, S., Orre, V.V., Goldschmidt, E.A. et al. Tunable quantum interference using a topological source of indistinguishable photon pairs. Nat. Photon. 15, 542–548 (2021). https://doi.org/10.1038/s41566-021-00810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00810-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing