Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epitaxial Pb on InAs nanowires for quantum devices

Abstract

Semiconductor–superconductor hybrids are widely used to realize complex quantum phenomena, such as topological superconductivity and spins coupled to Cooper pairs. Accessing new, exotic regimes at high magnetic fields and increasing operating temperatures beyond the state-of-the-art requires new, epitaxially matched semiconductor–superconductor materials. One challenge is the generation of favourable conditions for heterostructural formation between materials with the desired properties. Here we harness an increased knowledge of metal-on-semiconductor growth to develop InAs nanowires with epitaxially matched, single-crystal, atomically flat Pb films with no axial grain boundaries. These highly ordered heterostructures have a critical temperature of 7 K and a superconducting gap of 1.25 meV, which remains hard at 8.5 T, and therefore they offer a parameter space more than twice as large as those of alternative semiconductor–superconductor hybrids. Additionally, InAs/Pb island devices exhibit magnetic field-driven transitions from a Cooper pair to single-electron charging, a prerequisite for use in topological quantum computation. Semiconductor–Pb hybrids potentially enable access to entirely new regimes for a number of different quantum systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: InAs/Pb bicrystal interfacial match.
Fig. 2: Pb-thickness-dependent morphology.
Fig. 3: Hybrid InAs/Pb tunnel spectroscopy.
Fig. 4: Hybrid InAs/Pb island.

Similar content being viewed by others

Data availability

Full data sets for all figures, TEM images, transport data, electronic logbooks and other data that support the findings of this study are available online at https://doi.org/10.17894/ucph.3141b812-a33f-41ed-a732-2a80fcbdb7f4.

References

  1. Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    Article  CAS  Google Scholar 

  2. Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015).

    Article  CAS  Google Scholar 

  3. Pendharkar, M. et al. Parity-preserving and magnetic field resilient superconductivity in indium antimonide nanowires with tin shells. Preprint at http://arxiv.org/abs/1912.06071 (2019).

  4. Klinovaja, J. & Loss, D. Time-reversal invariant parafermions in interacting Rashba nanowires. Phys. Rev. B 90, 045118 (2014).

    Article  CAS  Google Scholar 

  5. Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    Article  CAS  Google Scholar 

  6. Luthi, F. et al. Evolution of nanowire transmon qubits and their coherence in a magnetic field. Phys. Rev. Lett. 120, 100502 (2018).

    Article  CAS  Google Scholar 

  7. Tosi, L. et al. Spin-orbit splitting of Andreev states revealed by microwave spectroscopy. Phys. Rev. X 9, 011010 (2019).

    CAS  Google Scholar 

  8. Hays, M. et al. Direct microwave measurement of Andreev-bound-state dynamics in a semiconductor–nanowire Josephson junction. Phys. Rev. Lett. 121, 047001 (2018).

    Article  CAS  Google Scholar 

  9. Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575 (2020).

    CAS  Google Scholar 

  10. Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nat. Nanotechnol. 10, 232–236 (2015).

    Article  CAS  Google Scholar 

  11. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  CAS  Google Scholar 

  12. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  CAS  Google Scholar 

  13. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  14. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Article  CAS  Google Scholar 

  15. Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Article  CAS  Google Scholar 

  16. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Article  CAS  Google Scholar 

  17. Carrad, D. J. et al. Shadow epitaxy for in situ growth of generic semiconductor/superconductor hybrids. Adv. Mater. 32, 1908411 (2020).

    Article  CAS  Google Scholar 

  18. Bjergfelt, M. et al. Superconducting vanadium/indium–arsenide hybrid nanowires. Nanotechnology 30, 294005 (2019).

    Article  CAS  Google Scholar 

  19. Shen, J. et al. Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands. Nat. Commun. 9, 4801 (2018).

    Article  CAS  Google Scholar 

  20. Vaitiekenas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020).

    Article  CAS  Google Scholar 

  21. Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).

    Google Scholar 

  22. Paajaste, J. et al. Pb/InAs nanowire Josephson junction with high critical current and magnetic flux focusing. Nano Lett. 15, 1803–1808 (2015).

    Article  CAS  Google Scholar 

  23. Güsken, N. A. et al. MBE growth of Al/InAs and Nb/InAs superconducting hybrid nanowire structures. Nanoscale 9, 16735–16741 (2017).

    Article  Google Scholar 

  24. Deng, M. et al. Majorana bound state in a coupled quantum-dot hybrid–nanowire system. Science 354, 1557–1562 (2016).

    Article  CAS  Google Scholar 

  25. Sestoft, J. E. et al. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Phys. Rev. Mater. 2, 044202 (2018).

    Article  CAS  Google Scholar 

  26. Vaitiekėnas, S. et al. Selective-area-grown semiconductor–superconductor hybrids: a basis for topological networks. Phys. Rev. Lett. 121, 147701 (2018).

    Article  Google Scholar 

  27. Aseev, P. et al. Selectivity map for molecular beam epitaxy of advanced III–V quantum nanowire networks. Nano Lett. 19, 218–227 (2019).

    Article  CAS  Google Scholar 

  28. Kjaergaard, M. et al. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure. Nat. Commun. 7, 12841 (2016).

    Article  CAS  Google Scholar 

  29. Shabani, J. et al. Two-dimensional epitaxial superconductor–semiconductor heterostructures: a platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).

    Article  CAS  Google Scholar 

  30. Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).

    Article  CAS  Google Scholar 

  31. Su, Z. et al. Andreev molecules in semiconductor nanowire double quantum dots. Nat. Commun. 8, 585 (2017).

    Article  CAS  Google Scholar 

  32. Krizek, F. et al. Growth of InAs wurtzite nanocrosses from hexagonal and cubic basis. Nano Lett. 17, 6090–6096 (2017).

    Article  CAS  Google Scholar 

  33. Gazibegovic, S. et al. Epitaxy of advanced nanowire quantum devices. Nature 548, 434–438 (2017).

    Article  CAS  Google Scholar 

  34. Pentcheva, R. et al. Non-Arrhenius behavior of the island density in metal heteroepitaxy: Co on Cu (001). Phys. Rev. Lett. 90, 076101 (2003).

    Article  CAS  Google Scholar 

  35. Venables, J. & Spiller, G. in Surface Mobilities on Solid Materials (ed. Binh, V. T.) 341–404 (Springer, 1983).

  36. Vesselinov, M. I. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (World Scientific, 2016).

  37. Thompson, C. V. Solid-state dewetting of thin films. Ann. Rev. Mater. Res. 42, 399–434 (2012).

    Article  CAS  Google Scholar 

  38. Gramich, J., Baumgartner, A. & Schönenberger, C. Subgap resonant quasiparticle transport in normal–superconductor quantum dot devices. Appl. Phys. Lett. 108, 172604 (2016).

    Article  CAS  Google Scholar 

  39. van Heck, B., Lutchyn, R. M. & Glazman, L. I. Conductance of a proximitized nanowire in the Coulomb blockade regime. Phys. Rev. B 93, 235431 (2016).

    Article  CAS  Google Scholar 

  40. Takei, S., Fregoso, B. M., Hui, H.-Y., Lobos, A. M. & Das Sarma, S. Soft superconducting gap in semiconductor Majorana nanowires. Phys. Rev. Lett. 110, 186803 (2013).

    Article  CAS  Google Scholar 

  41. Lee, E. J. H. et al. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109, 186802 (2012).

    Article  CAS  Google Scholar 

  42. Hansen, E. B., Danon, J. & Flensberg, K. Probing electron–hole components of subgap states in Coulomb blockaded Majorana islands. Phys. Rev. B 97, 041411 (2018).

    Article  CAS  Google Scholar 

  43. Klimovskikh, I. I. et al. Spin–orbit coupling induced gap in graphene on Pt(111) with intercalated Pb monolayer. ACS Nano 11, 368–374 (2017).

    Article  CAS  Google Scholar 

  44. Calleja, F. et al. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands. Nat. Phys. 11, 43–47 (2015).

    Article  CAS  Google Scholar 

  45. Ruby, M., Heinrich, B. W., Peng, Y., von Oppen, F. & Franke, K. J. Exploring a proximity-coupled Co chain on Pb(110) as a possible Majorana platform. Nano Lett. 17, 4473–4477 (2017).

    Article  CAS  Google Scholar 

  46. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  CAS  Google Scholar 

  47. Reeg, C., Loss, D. & Klinovaja, J. Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime. Phys. Rev. B 97, 165425 (2018).

    Article  CAS  Google Scholar 

  48. Ménard, G. C. et al. Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nat. Commun. 10, 2587 (2019).

    Article  CAS  Google Scholar 

  49. Ruby, M., Heinrich, B. W., Pascual, J. I. & Franke, K. J. Experimental demonstration of a two-band superconducting state for lead using scanning tunneling spectroscopy. Phys. Rev. Lett. 114, 157001 (2015).

    Article  CAS  Google Scholar 

  50. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Danish National Research Foundation (J.E.S., K.G.-R. and J.N.), European Union’s Horizon 2020 research and innovation programme under grant agreement no. 823717 (ESTEEM3) (L.Z. and E.O.), FETOpen grant no. 828948 (AndQC) (T.K., M.M. and J.N.) and QuantERA project no. 127900 (SuperTOP) (K.G.-R. and J.N.), Villum Foundation project no. 25310 (K.G.-R.), Innovation Fund Denmark’s Quantum Innovation Center Qubiz (D.C. and J.N.), University of Copenhagen (T.K.) and the Carlsberg Foundation (J.N.). J.d.B. acknowledges support by the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program. We thank M. Bjergfelt, M. Burello, A. Geresdi, T.S. Jespersen, J. Paaske, J.C. Estrada Saldaña and S. Vaitiekenas for useful discussions. C. B. Sørensen and S. Upadhyay are gratefully acknowledged for technical assistance and support.

Author information

Authors and Affiliations

Authors

Contributions

T.K., M.M., D.O. and J.N. developed the materials growth and analysis. T.K., M.M., L.Z., E.J. and E.O. performed the TEM imaging. T.K., M.M., D.O. and D.J.C. developed the Pb device processing. T.K., D.O., D.J.C., J.E.S., J.d.B., K.G.-R. and J.N. carried out transport measurements. J.N. supervised the project. All authors contributed to analysing and interpreting the data and to writing the manuscript.

Corresponding authors

Correspondence to Thomas Kanne or Jesper Nygård.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Nanotechnology thanks Javad Shabani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Tunnel spectroscopy of superconducting gap for additional devices.

a, SEM micrograph of a NS device used for tunnel spectroscopy. Backgate voltage, VBG, and/or sidegate voltage, VSG, was used to adjust the chemical potential along the entire nanowire or the exposed InAs junction, respectively. b, Averaged conductance, Gavg, over VSG vs VSD for the data in c. Coulomb-blockade-related resonances for |VSD |> Δ/e are averaged out and superconducting coherence peaks are visible. cj, Bias spectroscopy of 8 different NS devices as function of VSG or VBG. The conductance lines in the gap of panels f (VBG ~ 9 V) and g (VSG ~ 5.7 V) may be related to a parallel channel, while the conductance features in for example panels h (see also high resolution zoom in k) and j (VBG ~ − 25 V) can be attributed to bound states. For further discussion, see Supplementary Section 4.1.

Extended Data Fig. 2 Magnetic field evolution of the superconducting gap for additional devices.

Conductance, g, vs VSD and B for: a, the same device as in main text Fig. 3 with different gate voltage settings and be separate devices with varying Pb thicknesses. In a,c,d the superconducting gap remains hard until the highest measurable B was reached, while in b discrete bound states converge towards VSD = 0. The critical field is reduced for devices with thicker films. fj, Normalised conductance g/gN (log-scale) vs VSD at zero and finite field for each device, showing that a strong suppression of zero bias conductance persists at finite field. For further discussion, see Supplementary Section 4.1.

Extended Data Fig. 3 InAs/Pb island device in perpendicular magnetic field.

a, False-colored SEM micrograph of an InAs/Pb island device. Yellow and pink, Ti/Au contacts and gates, respectively; Blue, Pb. Perpendicular magnetic field direction is indicated by B. b, Conductance as a function of VG and B showing evenly spaced Coulomb resonances that split abruptly at B ~ 0.2 T. Inset shows the same data on a logarithmic scale to highlight the split. c, Differential conductance at zero field as a function of VG and VSD showing evenly 2e-spaced Coulomb diamonds with asymmetric lead coupling. d, Same Coulomb diamonds shown in (c) recorded at B = 0.4, 0.9 and 2 T. For further discussion, see Supplementary Section 4.2.2.

Supplementary information

Supplementary Information

Supplementary Information, figures and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanne, T., Marnauza, M., Olsteins, D. et al. Epitaxial Pb on InAs nanowires for quantum devices. Nat. Nanotechnol. 16, 776–781 (2021). https://doi.org/10.1038/s41565-021-00900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00900-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing