Skip to main content
Log in

A Quasi-Conservative Discontinuous Galerkin Method for Multi-component Flows Using the Non-oscillatory Kinetic Flux

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a high order quasi-conservative discontinuous Galerkin (DG) method using the non-oscillatory kinetic flux is proposed for the 5-equation model of compressible multi-component flows with Mie-Grüneisen equation of state. The method mainly consists of three steps: firstly, the DG method with the non-oscillatory kinetic flux is used to solve the conservative equations of the model; secondly, inspired by Abgrall’s idea, we derive a DG scheme for the volume fraction equation which can avoid the unphysical oscillations near the material interfaces; finally, a multi-resolution weighted essentially non-oscillatory limiter and a maximum-principle-satisfying limiter are employed to ensure oscillation-free near the discontinuities, and preserve the physical bounds for the volume fraction, respectively. Numerical tests show that the method can achieve high order for smooth solutions and keep non-oscillatory at discontinuities. Moreover, the velocity and pressure are oscillation-free at the interface and the volume fraction can stay in the interval [0,1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, I.L., Glimm, J.: Front tracking for gas dynamics. J. Comput. Phys. 62, 83–110 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Jiang, S.: A non-oscillatory kinetic scheme for multi-component flows with the equation of state for a stiffened gas. J. Comput. Math. 29, 661–683 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Jiang, S.: Modified kinetic flux vector splitting schemes for compressible flows. J. Comput. Phys. 228, 3582–3604 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, J., Zhang, F., Liu, T.G.: A discontinuous Galerkin method for the simulation of compressible gas–gas and gas–water two-medium flows. J. Comput. Phys. 403, 109059 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coralic, V., Colonius, T.: Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Franquet, E., Perrier, V.: Runge–Kutta discontinuous Galerkin method for interface flows with a maximum preserving limiter. Comput. Fluids 65, 2–7 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gryngarten, L., Menon, S.: A generalized approach for sub- and super-critical flows using the local discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 253, 169–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henry de Frahan, M.T., Varadan, S., Johnsen, E.: A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces. J. Comput. Phys. 280, 489–509 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kreeft, J.J., Koren, B.: A new formulation of Kapila’s five-equation model for compressible two-fluid flow, and its numerical treatment. J. Comput. Phys. 229, 6220–6242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krivodonova, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226, 879–896 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, T.S., Zheng, T.S., Winoto, S.H.: An interface-capturing method for resolving compressible two-fluid flows with general equation of state. Commun. Comput. Phys. 6, 1137–1162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Q.: A gas-kinetic Riemann solver for stiffened gas interface and its application in multimaterial flows. Commun. Comput. Phys. 25, 416–447 (2019)

    Article  MathSciNet  Google Scholar 

  22. Li, Q.: An improved gas-kinetic scheme for multimaterial flows. Commun. Comput. Phys. 27, 145–166 (2020)

    Article  MathSciNet  Google Scholar 

  23. Lian, Y.S., Xu, K.: A gas-kinetic scheme for multimaterial flows and its application in chemical reactions. J. Comput. Phys. 163, 349–375 (2000)

    Article  MATH  Google Scholar 

  24. Liu, H., Xu, K.: A Runge–Kutta discontinuous Galerkin method for viscous flow equations. J. Comput. Phys. 224, 1223–1242 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, N., Xu, X., Chen, Y.: High-order spectral volume scheme for multi-component flows using non-oscillatory kinetic flux. Comput. Fluids 152, 120–133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, T.G., Khoo, B.C., Wang, C.W.: The ghost fluid method for compressible gas–water simulation. J. Comput. Phys. 204, 193–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    Article  MATH  Google Scholar 

  28. Lu, H., Zhu, J., Wang, D.H., Zhao, N.: Runge–Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow. Comput. Fluids 126, 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo, D., Huang, W., Qiu, J.X.: A quasi-Lagrangian moving mesh discontinuous Galerkin method for hyperbolic conservation laws. J. Comput. Phys. 396, 544–578 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, G., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)

    Article  MATH  Google Scholar 

  31. Ni, G., Sun, W.: A \(\gamma \)-DGBGK scheme for compressible multi-fluids. Int. J. Numer. Meth. Fluids 66, 760–777 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nonomura, T., Fujii, K.: Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature. J. Comput. Phys. 340, 358–388 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Osher, S., Sethian, A.: Fronts prohabiliting with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pan, L., Cheng, J., Wang, S., Xu, K.: A two-stage fourth-order gas-kinetic scheme for compressible multicomponent flows. Commun. Comput. Phys. 22, 1123–1149 (2017)

    Article  MathSciNet  Google Scholar 

  35. Qiu, J.X., Liu, T.G., Khoo, B.C.: Runge–Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: one-dimensional case. J. Comput. Phys. 222, 353–373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qiu, J.X., Liu, T.G., Khoo, B.C.: Simulations of compressible two-medium flow by Runge–Kutta discontinuous Galerkin methods with the ghost fluid method. Commun. Comput. Phys. 3, 479–504 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Qiu, J.X., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinous Galerkin method: one dimensional case. J. Comput. Phys. 193, 115–135 (2003)

    Article  MATH  Google Scholar 

  38. Qiu, J.X., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rehman, A., Qamar, S.: High order finite-volume WENO scheme for five-equation model of compressible two-fluid flow. Comput. Math. Appl. 76, 2648–2664 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Saleem, M.R., Ali, I., Qamar, S.: Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model. Res. Phys. 8, 379–390 (2018)

    Google Scholar 

  41. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228, 1678–1712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shyue, K.M.: A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state. J. Comput. Phys. 171, 678–707 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shyue, K.M.: A fluid-mixture type algorithm for compressible multicomponent flow with Van der Waals equation of state. J. Comput. Phys. 156, 43–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shyue, K.M.: A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions. J. Comput. Phys. 215, 219–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, C.W., Liu, T.G., Shu, C.-W.: A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J. Sci. Comput. 28, 278–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, C.W., Shu, C.-W.: An interface treating technique for compressible multi-medium flow with Runge–Kutta discontinuous Galerkin method. J. Comput. Phys. 229, 8823–8843 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu, K.: A kinetic method for hyperbolic-elliptic equations and its application in two-phase flow. J. Comput. Phys. 166, 383–399 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xu, K.: BGK-based scheme for multicomponent flow calculations. J. Comput. Phys. 134, 122–133 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yan, J., Osher, S.: A local discontinuous Galerkin method for directly solving Hamilton–Jacobi equations. J. Comput. Phys. 230, 232–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, X.X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order schemes for scalar conservation laws: survey and new developments. Proc. R. Soc. A 467, 2752–2776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, X.X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhu, J., Qiu, J.X., Liu, T.G., Khoo, B.C.: High-order RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations. Appl. Numer. Math. 61, 554–580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhu, J., Qiu, J.X., Shu, C.-W.: High-order Runge–Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. J. Comput. Phys. 404, 109105 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhu, J., Shu, C.-W., Qiu, J.X.: High-order Runge–Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes. Appl. Numer. Math. 153, 519–539 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is supported partly by Science Challenge Project (China), No. TZ2016002, National Natural Science Foundation-Joint Fund (China) Grant U1630247, and National Natural Science Foundation of China (Grant Nos. 11671050)

Appendix

Appendix

Fig. 15
figure 15

\(N=200\). Solid line: the reference solution; square symbols and solid line: LLF flux; delta symbols and solid line: NOK flux. Top: \(P^1\) elements; Bottom: \(P^2\) elements

Fig. 16
figure 16

\(N=5000\). Solid line: the reference solution; square symbols and solid line: LLF flux; delta symbols and solid line: NOK flux. Top: \(P^1\) elements; Bottom: \(P^2\) elements

In this paper, the NOK flux is employed. But the Lax-Friedrichs flux can be used for our method. The idea is the same as previous section described. However, the formulation is a little different from the present one. In (3.4), the NOK flux is replaced by the local Lax-Friedrichs (LLF) flux, which has the form of

$$\begin{aligned} \hat{F}(a,b)=\frac{1}{2}(F(a)+F(b)-\alpha (b-a)), \end{aligned}$$

where \(\alpha \) is the numerical viscosity constant taken as the largest eigenvalues in magnitude of

$$\begin{aligned} \frac{\partial }{\partial u}F({\bar{u}}_j), \; \frac{\partial }{\partial u}F({\bar{u}}_{j+1}), \end{aligned}$$

where \({\bar{u}}_j\) and \({\bar{u}}_{j+1}\) are the cell averages on the cell \(I_j\) and \(I_{j+1}\), respectively.

Then the same procedure is implemented as Sect. 3.2. The details are omitted here. The final discretization for the volume fraction equation is given by

$$\begin{aligned} \frac{dY_j^{(l)}}{dt}=-&\frac{1}{a_l}[(v_0Y_{j+ \frac{1}{2}}^-+v_0Y_{j+\frac{1}{2}}^+-\alpha (Y_{j+ \frac{1}{2}}^+-Y_{j+\frac{1}{2}}^-))\varphi _l(x_{j+ \frac{1}{2}}^-)-\\&(v_0Y_{j-\frac{1}{2}}^-+v_0Y_{j-\frac{1}{2}}^+- \alpha (Y_{j-\frac{1}{2}}^+-Y_{j-\frac{1}{2}}^-)) \varphi _l(x_{j-\frac{1}{2}}^+))-\\&v_0\int _{I_j}Y(\varphi _l(x))_x dx-Y(x_j)(\hat{v}_{j+ \frac{1}{2}}\varphi _l(x_{j+\frac{1}{2}}^-)-\\&\hat{v}_{j-\frac{1}{2}}\varphi _l(x_{j-\frac{1}{2}}^+) -\int _{I_j}v(\varphi _l(x))_xdx)], \; l=1,\ldots , L, \end{aligned}$$

where \(\hat{v}_{j+\frac{1}{2}}=\frac{1}{2}(v_{j+\frac{1}{2}}^-+v_{j+\frac{1}{2}}^+)\).

Finally, we compute two examples to show the differences of two numerical fluxes and the parameter \(\eta \) in the NOK flux is set to be 0.8. The first one is Shu-Osher problem [25], which contains both shocks and complex smooth region structures. The computational domain is taken as \((-5,5)\). The initial condition is given by

$$\begin{aligned} (\rho ,v,P,\gamma ,B)= {\left\{ \begin{array}{ll} (3.857143,2.629369,\frac{31}{3},1.4,1), \; &{} x\leqslant -4,\\ (1+0.2\sin (5x),0,1,1.9,0), \; &{}x>-4, \end{array}\right. } \end{aligned}$$

The computed density of two numerical fluxes at \(T=1.8\) is plotted in Fig. 15, where the solid line is the fine grid solution computed by \(\Delta x=\frac{1}{2000}\) with \(P^1\) elements.

We recompute the Example 3 using LLF flux. The numerical solution of the density with two numerical fluxes is shown in Fig. 16. From the figures, we can observe that the solution with NOK flux is better than the one with LLF flux for \(P^1\) elements. The differences between them are reduced for \(P^2\) elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Qiu, J., Zhu, J. et al. A Quasi-Conservative Discontinuous Galerkin Method for Multi-component Flows Using the Non-oscillatory Kinetic Flux. J Sci Comput 87, 96 (2021). https://doi.org/10.1007/s10915-021-01494-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01494-z

Keywords

Mathematics Subject Classification

Navigation