Skip to main content

Advertisement

Log in

Natural Fibre-Reinforced Composite for Ballistic Applications: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The need to provide a better and stronger protection against various kinds of ballistic impacts and threats has necessitated the continuous exploration and utilization of high-performance fibres, especially those that are derived from renewable sources for ballistic applications. The development of ballistic protection materials with improved performance and low weight has received much concerns in the past few decades due to the rising cases of threats and insurgencies. Owing to the necessity of improving the ballistic performance of body armour and protective wears especially for military personnel, with a huge consideration for eco-friendly requirement, a review of relevant studies in this area is necessary. Present review article aims to present an overview of the progress and the outstanding advances that have been witnessed in the development of natural-based anti-ballistic composites in the past few years. The article covers the type and selection of the fibre/matrix, failure modes, Impact energy absorption and ballistic simulation of NFRCs. It also highlights the economic cost analysis of replacing synthetic fibres with natural ones in a ballistic composite, and the methods of enhancing the composites for high performance and greater ballistic efficiency. The utilization of natural fibres in PMCs have shown their great potentials as substitutes to the existing advanced fibrous materials that are mostly dominated by synthetic fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sanjay MR, Arpitha GR, Naik LL, Gopalakrishna K, Yogesha B (2016) Applications of natural fibers and its composites: an overview. Nat Resour 7(03):108–108

    CAS  Google Scholar 

  2. Taj S, Munawar MA, Khan S (2007) Natural fiber-reinforced polymer composites. Proceed-Pakistan Acad Sci 44(2):129–129

    CAS  Google Scholar 

  3. Varvani-Farahani A (2010) Composite materials: characterization, fabrication and application-research challenges and directions. Appl Compos Mater 17(2):63–67

    Article  Google Scholar 

  4. Belaadi A, Bezazi A, Maache M, Scarpa F (2014) Fatigue in sisal fiber reinforced polyester composites: hysteresis and energy dissipation. Procedia Eng 74:325–328

    Article  CAS  Google Scholar 

  5. Zaidi BM, Zhang J, Magniez K, Gu H, Miao M (2018) Optimizing twisted yarn structure for natural fiber-reinforced polymeric composites. J Compos Mater 52(3):373–381

    Article  CAS  Google Scholar 

  6. L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015

  7. Xiong X, Shen SZ, Hua L, Li X, Wan X, Miao M (2018) Predicting tensile behaviors of short flax fiber-reinforced polymer–matrix composites using a modified shear-lag model. J Compos Mater 52(27):3701–3713

    Article  CAS  Google Scholar 

  8. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112

    Article  CAS  Google Scholar 

  9. Sanborn B, DiLeonardi AM, Weerasooriya T (2015) Tensile properties of Dyneema SK76 single fibers at multiple loading rates using a direct gripping method. J Dynamic Behav Mater 1(1):4–14

    Article  Google Scholar 

  10. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics. Comp Sci Technol 63(9):1259–1264

    Article  CAS  Google Scholar 

  11. Salman SD, Leman Z, Sultan MTH, Ishak MR, Cardona F (2016) Ballistic impact resistance of plain woven kenaf/aramid reinforced polyvinyl butyral laminated hybrid composite. BioResources 11(3):7282–7295

    Article  CAS  Google Scholar 

  12. Ali A, Shaker ZR, Khalina A, Sapuan SM (2011) Development of anti-ballistic board from ramie fiber. Polym-Plast Technol Eng 50(6):622–634

    Article  CAS  Google Scholar 

  13. Bandaru AK, Ahmad S, Bhatnagar N (2017) Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos Part a-Appl Sci Manufact 97:151–165

    Article  CAS  Google Scholar 

  14. Braga FD, Bolzan LT, Lima EP, Monteiro SN (2017) Performance of natural curaua fiber-reinforced polyester composites under 7.62 mm bullet impact as a stand-alone ballistic armor. J Mater Res Technol-Jmr&T 6(4):323–328

    Article  CAS  Google Scholar 

  15. Jambari S, Yahya MY, Abdullah MR, Jawaid M (2017) Woven Kenaf/Kevlar hybrid yarn as potential fiber reinforced for anti-ballistic composite material. Fibers Polym 18(3):563–568

    Article  CAS  Google Scholar 

  16. Luz FSD, Monteiro SN, Lima ES, Júnior L, Pereira É (2017) Ballistic Application of coir fiber reinforced epoxy composite in multilayered armor. Mater Res (AHEAD) 0–0

  17. Nascimento LFC, Holanda LIF, Louro LHL, Monteiro SN, Gomes AV, Lima EP (2017) Natural mallow fiber-reinforced epoxy composite for ballistic armor against class III-A ammunition. Metall Mater Transact a-Phys Metall Mater Sci 48A(10):4425–4431

    Article  CAS  Google Scholar 

  18. Wambua P, Vangrimde B, Lomov S, Verpoest I (2007) The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Compos Struct 77(2):232–240

    Article  Google Scholar 

  19. Nurazzi NM, Asyraf MRM, Khalina A, Abdullah N, Aisyah HA, Rafiqah SA, Sabaruddin FA, Kamarudin SH, Norrrahim MNF, Ilyas RA, Sapuan SM (2021) A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers. https://doi.org/10.3390/polym13040646

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ribeiro MP, Neuba LDM, da Silveira PHPM, da Luz FS, -H.d.S. Figueiredo AB, Monteiro SN, Moreira MO (2021) Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric. J Mater Res Technol 12:221–233

    Article  CAS  Google Scholar 

  21. Nayak SY, Sultan MTH, Shenoy SB, Kini CR, Samant R, Shah AUM, Amuthakkannan P (2020) Potential of Natural Fibers in Composites for Ballistic Applications – A Review. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1787919

    Article  Google Scholar 

  22. Nascimento LFC, Louro LHL, Monteiro SN, Lima EP, Luz FS (2017) Mallow fiber-reinforced epoxy composites in multilayered armor for personal ballistic protection. Jom 69(10):2052–2056

    Article  CAS  Google Scholar 

  23. da Silva AO, de Castro Monsores KG, Oliveira SDSA, Weber RP, Monteiro SN (2018) Ballistic behavior of a hybrid composite reinforced with curaua and aramid fabric subjected to ultraviolet radiation. J Mater Res Technol 7(4):584–591

    Article  CAS  Google Scholar 

  24. Monteiro SN, Pereira AC, Ferreira CL, Pereira Júnior É, Weber RP, Assis FSD (2018) Performance of plain woven jute fabric-reinforced polyester matrix composite in multilayered ballistic system. Polymers 10(3):230

    Article  PubMed Central  CAS  Google Scholar 

  25. de Oliveira Braga F, Lopes PHL, Oliveira MS, Monteiro SN, Lima ÉP Jr (2019) Thickness assessment and statistical optimization of a 3-layered armor system with ceramic front and curaua fabric composite/aluminum alloy backing. Comp Part B: Eng 166:48–55

    Article  CAS  Google Scholar 

  26. Pereira AC, de Assis FS, da Costa Garcia F, Oliveira MS, da Cruz Demosthenes HAC, Lopera HAC, Monteiro SN (2019) Ballistic performance of multilayered armor with intermediate polyester composite reinforced with fique natural fabric and fibers. J Mater Res Technol 8(5):4221–4226

    Article  CAS  Google Scholar 

  27. Oliveira MS, da Costa GarciaFilho F, Pereira AC, da Nunes LF, de Luz F, Oliveira Braga HA, Colorado HA, Monterio SN (2019) Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the Weibull analysis. J Mater Res Technol 8(6):5899–5908

    Article  CAS  Google Scholar 

  28. Quintero S, Porras A, Hernandez C, Maranon A (2018) The Response of Manicaria saccifera Natural Fabric Reinforced PLA Composites to Impact by Fragment Simulating Projectiles. Advances in Natural Fibre Composites pp. 89–98.

  29. Benzait Z, Trabzon L (2018) A review of recent research on materials used in polymer–matrix composites for body armor application. J Compos Mater 52(23):3241–3263

    Article  CAS  Google Scholar 

  30. Rahman MA, Parvin F, Hasan M, Hoque ME (2015) Introduction to manufacturing of natural fibre-reinforced polymer composites, Springer pp. 17–43.

  31. Nurazzi NM, Khalina A, Sapuan SM, Laila A, Rahmah M, Hanafee Z, Review A (2017) Fibres, Polymer Matrices and Composites, Pertanika. J Sci Technol 25(4):1085–1102

    Google Scholar 

  32. Abidin NM, Sultan MT, Hua LS, Basri AA, Md Shah AU, Safri SN (2019) A brief review of computational analysis and experimental models of composite materials for aerospace applications. J Reinforced Plastics Comp 38:1031–1039

    Article  CAS  Google Scholar 

  33. Adebayo G, Hassan A, Yahya R, Muhamad Sarih N, Odesanya KO (2019) Impact of water saturation on the tensile and thermal properties of heat-treated mangrove/high-density polyethylene composites. J Thermoplastic Comp Mater 0892705719847238.

  34. Naveen J, Jawaid, Zainudin E, Sultan MT, Yahaya RB (2018) Selection of natural fiber for hybrid Kevlar/natural fiber reinforced polymer composites for personal body armour by using analytical hierarchy process. Front Mater 5

  35. Anggoro DD, Kristiana N (2015) Combination of Natural Fiber Boehmeria nivea (Ramie) with Matrix Epoxide for Bullet Proof Vest Body Armor, in: Hadiyanto, H. Nur, A. Budiman, F. Iskandar, S. Ismadji (Eds.), Amer Inst Physics, [Anggoro, Didi Dwi; Kristiana, Nunung] Diponegoro Univ, Chem Engn, Fac Engn, Jln Prof Sudharto, Tembalang 50239, Semarang, Indonesia. Anggoro, DD (reprint author), Diponegoro Univ, Chem Engn, Fac Engn, Jln Prof Sudharto, Tembalang 50239, Semarang, Indones

  36. Monteiro SN, Lima ÉP, Louro LHL, Da Silva LC, Drelich JW (2015) Unlocking function of aramid fibers in multilayered ballistic armor. Metall Mater Trans A 46(1):37–40

    Article  CAS  Google Scholar 

  37. Rohen LA, Margem FM, Monteiro SN, Vieira CMF, Madeira de Araujo B, Lima ES (2015) Ballistic efficiency of an individual epoxy composite reinforced with sisal fibers in multilayered armor. Mater Res 18:55–62

    Article  CAS  Google Scholar 

  38. Haro EE, Szpunar JA, Odeshi AG (2018) Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Defence Technol 14(3):238–249

    Article  Google Scholar 

  39. Monteiro SN, Candido VS, Braga FO, Bolzan LT, Weber RP, Drelich JW (2016) Sugarcane bagasse waste in composites for multilayered armor. Eur Polymer J 78:173–185

    Article  CAS  Google Scholar 

  40. Naveen J, Jawaid M, Zainudin E, Sultan MT, Yahaya R (2019) Evaluation of ballistic performance of hybrid Kevlar®/Cocos nucifera sheath reinforced epoxy composites. J Textile Instit 110(8):1179–1189

    Article  CAS  Google Scholar 

  41. Pinheiro MA, Gomes LG, Silva ACRD, Candido VS, Reis RHM, Monteiro SN (2019) Guaruman: a Natural Amazonian Fiber with Potential for Polymer Composite Reinforcement. Mater Res 22

  42. Azmi AMR, Sultan MTH, Hamdan A (2017) Design and development of bulletproof vest using kenaf fibre embedded with X-ray films, Centre Advanced Research Energy-Care, [Azmi, A. M. R.; Sultan, M. T. H.; Hamdan, A.] Univ Putra Malaysia, Aerosp Mfg Res Ctr, Upm Serdang 43400, Selangor, Malaysia. [Azmi, A. M. R.; Sultan, M. T. H.; Hamdan, A.] Univ Putra Malaysia, Fac Engn, Dept Aerosp Engn, Upm Serdang 43400, Selangor, Mal

  43. Candido VS, da Silva ACR, Simonassi NT, da Luz FS, Monteiro SN (2017) Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests. J Mater Res Technol-Jmr&T 6(4):334–338

    Article  CAS  Google Scholar 

  44. Pereira AC, Monteiro SN, de Assis FS, Margem FM, da Luz FS, Braga FD (2017) Charpy impact tenacity of epoxy matrix composites reinforced with aligned jute fibers. J Mater Res Technol-Jmr&T 6(4):312–316

    Article  CAS  Google Scholar 

  45. Salman SD, Leman Z, Sultan M, Ishak M, Cardona F (2017) Effect of kenaf fibers on trauma penetration depth and ballistic impact resistance for laminated composites. Text Res J 87(17):2051–2065

    Article  CAS  Google Scholar 

  46. Dhand V, Mittal G, Rhee KY, Park S-J, Hui D (2015) A short review on basalt fiber reinforced polymer composites. Compos B Eng 73:166–180

    Article  CAS  Google Scholar 

  47. Monteiro SN, Louro LHL, Trindade W, Elias CN, Ferreira CL, de Sousa Lima E, Weber RP, Suarez JCM, da Silva Figueiredo AB-H, Pinheiro WA (2015) Natural curaua fiber-reinforced composites in multilayered ballistic armor. Metall Mater Trans A 46(10):4567–4577

    Article  CAS  Google Scholar 

  48. Garcia Filho FDC, Oliveira MS, Pereira AC, Nascimento LFC, Matheus JRG, Monteiro SN (2019) Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition. J Mater Res Technol (2019).

  49. Garcia Filho FDC, Monteiro SN (2019) Piassava fiber as an epoxy matrix composite reinforcement for ballistic armor applications. JOM 71(2):801–808

    Article  CAS  Google Scholar 

  50. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  51. Muhammad SA, Ab Kadir MO, Rodhi AM, Hassan HM (2017) Variations of δ13C and δ15N in oil palm tree organs: an insight into C and N distribution. J Oil Palm Res 29(2):242–250

    Article  CAS  Google Scholar 

  52. Krpan AP, Tomašić Ž, Bašić Palković P (2011) Biopotential of indigobusch (Amorpha fruticosa L)–second year of investigation. Šumarski list 135(13):103–112

    Google Scholar 

  53. Jung DS, Ryou M-H, Sung YJ, Park SB, Choi JW (2013) Recycling rice husks for high-capacity lithium battery anodes. Proc Natl Acad Sci 110(30):12229–12234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Suramaythangkoor T, Gheewala SH (2008) Potential of practical implementation of rice straw-based power generation in Thailand. Energy Policy 36(8):3193–3197

    Article  Google Scholar 

  55. Francis JK (2004) Wildland shrubs of the United States and its territories: Thamnic descriptions, Volume 1, Gen. Tech. Rep. IITF-GTR-26. San Juan, PR: US Department of Agriculture, Forest Service, International Institute of Tropical Forestry; Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 830: 26

  56. Hejcman M, Kunzová E, Šrek P (2012) Sustainability of winter wheat production over 50 years of crop rotation and N, P and K fertilizer application on illimerized luvisol in the Czech Republic. Field Crop Res 139:30–38

    Article  Google Scholar 

  57. Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015

  58. Anbukarasi K, Anbukarasi K, Kalaiselvam S, Kalaiselvam S (2017) Thermal and Mechanical Behaviors of Biorenewable Fibers‐Based Polymer Composites, Handbook of Comp Renew Mater

  59. Naveen J, Jayakrishna K, Hameed Sultan MTB, Amir SMM (2020) Ballistic performance of natural fiber based soft and hard body armour-a mini review. Fron Mater 7:440

    Google Scholar 

  60. Bhatnagar N, Asija N (2016) Durability of high-performance ballistic composites. Elsevier, Lightweight ballistic composites, pp 231–283

    Google Scholar 

  61. Chang BP, Mohanty AK, Misra M (2020) Studies on durability of sustainable biobased composites: a review. RSC Adv 10(31):17955–17999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429

    Article  Google Scholar 

  63. Jawaid M, Khalil HPSA (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohyd Polym 86(1):1–18

    Article  CAS  Google Scholar 

  64. Biswas S, Ahsan Q, Cenna A, Hasan M, Hassan A (2013) Physical and mechanical properties of jute, bamboo and coir natural fiber. Fibers Polymers 14(10):1762–1767

    Article  CAS  Google Scholar 

  65. Chen H, Cheng H, Wang G, Yu Z, Shi SQ (2015) Tensile properties of bamboo in different sizes. J Wood Sci 61(6):552–561

    Article  Google Scholar 

  66. Cruz RBD, Lima Junior EP, Monteiro SN, Louro LHL (2015) Giant bamboo fiber reinforced epoxy composite in multilayered ballistic armor. Mater Res 18:70–75

    Article  Google Scholar 

  67. Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015

  68. Costa UO, Nascimento LFC, Garcia JM, Monteiro SN, Luz FSD, Pinheiro WA, Garcia Filho FDC (2019) Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor. Polymers 11(8):1356

    Article  PubMed Central  CAS  Google Scholar 

  69. Naveen J, Jawaid M, Zainudin E, Sultan MT, Yahaya R (2019) Effect of graphene nanoplatelets on the ballistic performance of hybrid Kevlar/Cocos nucifera sheath-reinforced epoxy composites. Text Res J 89(21–22):4349–4362

    Article  CAS  Google Scholar 

  70. Ahmed A, Chouhan H, Kartikeya K, Bhatnagar N (2019) Study on low and high strain rate behaviour of the adhesive bonds for armour application. J Adhesion 1–14

  71. da Luz FS, Ramos FJHTV, Nascimento LFC, da Silva Figueiredo AB-H, Monteiro SN (2018) Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. J Mater Res Technol 7(4):528–534

    Article  CAS  Google Scholar 

  72. Liu J, Zhu W, Yu Z, Wei X (2018) Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites. Acta Biomater 74:270–279

    Article  CAS  PubMed  Google Scholar 

  73. Mohamed S, Zainudin E, Sapuan S, Azaman M, Arifin A (2020) Energy behavior assessment of rice husk fibres reinforced polymer composite. J Market Res 9(1):383–393

    CAS  Google Scholar 

  74. Schuldies J, Nageswaran R (2010) Ceramic matrix composites for ballistic protection of vehicles and personnel. Elsevier, Blast Protection of Civil Infrastructures and Vehicles Using Composites, pp 235–243

    Google Scholar 

  75. Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2016) Investigating ballistic impact properties of woven kenaf-aramid hybrid composites. Fibers Polym 17(2):275–281

    Article  CAS  Google Scholar 

  76. Haro EE, Szpunar JA, Odeshi AG (2016) Ballistic impact response of laminated hybrid materials made of 5086–H32 aluminum alloy, epoxy and Kevlar® fabrics impregnated with shear thickening fluid. Compos A Appl Sci Manuf 87:54–65

    Article  CAS  Google Scholar 

  77. Rajole S, Ravishankar K, Kulkarni S (2018) Study on Ballistic Energy Absorption Capability of Glass-Epoxy and Jute-Epoxy-Rubber Sandwich Composites. Trans Tech Publ, Materials Science Forum, pp 14–19

    Google Scholar 

  78. Yahaya R, Sapuan S, Jawaid M, Leman Z, Zainudin E (2014) Quasi-static penetration and ballistic properties of kenaf–aramid hybrid composites. Mater Des 63:775–782

    Article  Google Scholar 

  79. Shalwan A, Yousif B (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24

    Article  CAS  Google Scholar 

  80. Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M (2011) Oil palm fiber (OPF) and its composites: A review. Ind Crops Prod 33(1):7–22

    Article  CAS  Google Scholar 

  81. Bénézet J-C, Stanojlovic-Davidovic A, Bergeret A, Ferry L, Crespy A (2012) Mechanical and physical properties of expanded starch, reinforced by natural fibres. Ind Crops Prod 37(1):435–440

    Article  CAS  Google Scholar 

  82. Swolfs Y, Gorbatikh L, Verpoest I (2014) Fibre hybridisation in polymer composites: a review. Compos A Appl Sci Manuf 67:181–200

    Article  CAS  Google Scholar 

  83. Wang R-M, Zheng S-R, Zheng YG (2011) Polymer matrix composites and technology, Elsevier

  84. Cicala G, Pergolizzi E, Piscopo F, Carbone D, Recca G (2018) Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin. Compos B Eng 132:69–76

    Article  CAS  Google Scholar 

  85. Karaduman Y, Onal L, Rawal A (2015) Effect of stacking sequence on mechanical properties of hybrid flax/jute fibers reinforced thermoplastic composites. Polym Compos 36(12):2167–2173

    Article  CAS  Google Scholar 

  86. Prasad N, Agarwal VK, Sinha S (2018) Hybridization effect of coir fiber on physico-mechanical properties of polyethylene-banana/coir fiber hybrid composites. Sci Eng Compos Mater 25(1):133–141

    Article  CAS  Google Scholar 

  87. Sanjay MR, Arpitha GR, Yogesha B (2015) Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: a review. Mater Today: Procee 2(4–5):2959–2967

    CAS  Google Scholar 

  88. Alkbir MFM, Sapuan SM, Nuraini AA, Ishak MR (2016) Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: a literature review. Compos Struct 148:59–73

    Article  Google Scholar 

  89. Deka L, Bartus S, Vaidya U (2006) Damage evolution and energy absorption of FRP plates subjected to ballistic impact using a numerical model, 9th International LS-DYNA Users Conference, Dearborn, MI

  90. Tian K, Zhou S, Yang C, Zhang J, Zhou C (2019) Tension failure simulation of notched composite laminate using floating node method combined with In-Situ effect theory. J Market Res 8(3):2494–2507

    Google Scholar 

  91. Razali N, Sultan MTH, Jawaid M (2017) A review on detecting and characterizing damage mechanisms of synthetic and natural fiber based composites. BioResources 12(4):9502–9519

    Article  CAS  Google Scholar 

  92. Hajer D, Jean-Luc R, Charfeddin M, Mohamed T, Mohamed H (2018) Experimental analysis of the linear and nonlinear vibration behavior of flax fibre reinforced composites with an interleaved natural viscoelastic layer. Compos B Eng 151:201–214

    Article  CAS  Google Scholar 

  93. David-West O, Banks W, Pethrick R (2011) A study of the effect of strain rate and temperature on the characteristics of quasi-unidirectional natural fibre-reinforced composites. Proceed Instit Mech Eng Part L: J Mater: Design Appl 225(3):133–148

    Google Scholar 

  94. Santulli C (2019) Mechanical and impact damage analysis on carbon/natural fibers hybrid composites: a review. Materials 12(3):517

    Article  CAS  PubMed Central  Google Scholar 

  95. Neves Monteiro S, Salgado de Assis F, Ferreira CL, Tonini Simonassi N, Pondé Weber R, Souza Oliveira M, Colorado HA (2018) Camposo Pereira, Fique fabric: a promising reinforcement for polymer composites. Polymers 10(3):246

    Article  PubMed Central  CAS  Google Scholar 

  96. Braga FDO, Bolzan LT, Ramos FJHTV, Monteiro SN, Lima ÉP Jr, Silva LCD (2017) Ballistic efficiency of multilayered armor systems with sisal fiber polyester composites. Mater Res 20:767–774

    Article  Google Scholar 

  97. Neves Monteiro S, de Oliveira Braga F, Pereira Lima E, Henrique Leme Louro L, Wieslaw Drelich J (2017) Promising curaua fiber-reinforced polyester composite for high-impact ballistic multilayered armor. Polymer Eng Sci 57(9):947–954

    Article  CAS  Google Scholar 

  98. Monteiro SN, Milanezi TL, Louro LHL, Lima ÉP Jr, Braga FO, Gomes AV, Drelich JW (2016) Novel ballistic ramie fabric composite competing with KevlarTM fabric in multilayered armor. Mater Des 96:263–269

    Article  CAS  Google Scholar 

  99. de Oliveira Braga F, Bolzan LT, da Luz FS, Lopes PHLM, Lima ÉP Jr, Monteiro SN (2017) High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates. J Mater Res Technol 6(4):417–422

    Article  CAS  Google Scholar 

  100. Park JL, Chi Y-S, Kang TJ (2013) Ballistic performance of hybrid panels composed of unidirectional/woven fabrics. Text Res J 83(5):471–486

    Article  CAS  Google Scholar 

  101. Randjbaran E, Zahari R, Jalil A, Aswan N, Majid AA, Laila D (2014) Hybrid composite laminates reinforced with kevlar/carbon/glass woven fabrics for ballistic impact testing. Sci World J 2014

  102. Roy R, Laha A, Awasthi N, Majumdar A, Butola BS (2018) Multi layered natural rubber coated woven P-aramid and UHMWPE fabric composites for soft body armor application. Polym Compos 39(10):3636–3644

    Article  CAS  Google Scholar 

  103. López-Alba E, Schmeer S, Díaz F (2018) Energy absorption capacity in natural fiber reinforcement composites structures. Materials 11(3):418

    Article  PubMed Central  CAS  Google Scholar 

  104. Ramakrishnan KR, Corn S, Le Moigne N, Ienny P, Leger R, Slangen PR (2017) High speed imaging for assessment of impact damage in natural fibre biocomposites. International Society for Optics and Photonics, Optical Measurement Systems for Industrial Inspection X, p 103290P

    Google Scholar 

  105. Saidane EH, Scida D, Assarar M, Ayad R (2017) Damage mechanisms assessment of hybrid flax-glass fibre composites using acoustic emission. Compos Struct 174:1–11

    Article  Google Scholar 

  106. Akil HM, Santulli C, Sarasini F, Tirillò J, Valente T (2014) Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Compos Sci Technol 94:62–70

    Article  CAS  Google Scholar 

  107. De Rosa IM, Santulli C, Sarasini F, Valente M (2009) Effect of loading-unloading cycles on impact-damaged jute/glass hybrid laminates. Polym Compos 30(12):1879–1887

    Article  CAS  Google Scholar 

  108. De Rosa IM, Santulli C, Sarasini F (2009) Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: A literature review. Compos A Appl Sci Manuf 40(9):1456–1469

    Article  CAS  Google Scholar 

  109. Liang S, Gning P-B, Guillaumat L (2015) Quasi-static behaviour and damage assessment of flax/epoxy composites. Mater Des 67:344–353

    Article  CAS  Google Scholar 

  110. Sarasini F, Tirillò J, Sergi C, Seghini MC, Cozzarini L, Graupner N (2018) Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites. Comp Struct

  111. Petrucci R, Santulli C, Puglia D, Nisini E, Sarasini F, Tirillò J, Torre L, Minak G, Kenny J (2015) Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Compos B Eng 69:507–515

    Article  CAS  Google Scholar 

  112. Haque R, Saxena M, Shit SC, Asokan P (2015) Fibre-matrix Adhesion and Properties Evaluation of Sisal Polymer Composite. Fibers and Polymers 16(1):146–152

    Article  CAS  Google Scholar 

  113. Tarfaoui M, Akesbi S (2001) A finite element model of mechanical properties of plain weave. Colloids Surf, A 187:439–448

    Article  Google Scholar 

  114. Kumar S, Gupta DS, Singh I, Sharma A (2010) Behavior of kevlar/epoxy composite plates under ballistic impact. J Reinf Plast Compos 29(13):2048–2064

    Article  CAS  Google Scholar 

  115. Simons J, Erlich D, Shockey D (2001),Finite element design model for ballistic response of woven fabrics. SRI Int 9

  116. D’Amato E (2001) Finite element modeling of textile composites. Compos Struct 54(4):467–475

    Article  Google Scholar 

  117. Lim C, Shim V, Ng Y (2003) Finite-element modeling of the ballistic impact of fabric armor. Int J Impact Eng 28(1):13–31

    Article  Google Scholar 

  118. D’Amato E (2005) Nonlinearities in mechanical behavior of textile composites. Compos Struct 71(1):61–67

    Article  Google Scholar 

  119. Abtew MA, Boussu F, Bruniaux P, Loghin C, Cristian I (2019) Ballistic impact mechanisms-A review on textiles and fibre-reinforced composites impact responses. Comp Struct 110966.

  120. Rodríguez Millán M, Moreno CE, Marco M, Santiuste C, Miguélez H (2016) Numerical analysis of the ballistic behaviour of Kevlar® composite under impact of double-nosed stepped cylindrical projectiles. J Reinforced Plastics Comp 35(2):124–137

    Article  CAS  Google Scholar 

  121. Soydan AM, Tunaboylu B, Elsabagh AG, Sarı AK, Akdeniz R (2018) Simulation and experimental tests of ballistic impact on composite laminate armor. Adv Mater Sci Eng 2018

  122. Ramezani A, Rothe H. Investigating different ballistic threats to validate the simulation model of fiber-reinforced plastics.

  123. Ravishankar K, Kulkarni S (2018) Ballistic impact study on jute-epoxy and natural rubber sandwich composites. Mater Today: Proceed 5(2):6916–6923

    Google Scholar 

  124. Kumar GR, Vijayanandh R, Kumar MS, Kumar SS (2018) Experimental testing and numerical simulation on natural composite for aerospace applications. AIP Conf Proceed 090045

  125. Bari K (2017) Experimental and simulation performance for fan extraction system. Global J Res Eng

  126. Abu Seman SAH, Ahmad R, Md Akil H (2019) Experimental and numerical investigations of kenaf natural fiber reinforced composite subjected to impact loading. Polymer Comp 40(3):909–915

    Article  CAS  Google Scholar 

  127. Sangamesh R, Ravishankar K, Kulkarni S (2018) Study on Ballistic Energy Absorption Capability of Glass-Epoxy and Jute-Epoxy-Rubber Sandwich Composites. Trans Tech Publ, Materials Science Forum, pp 14–19

    Google Scholar 

  128. Miranda P, Pajares A, Meyers MA (2019) Bioinspired composite segmented armour: Numerical simulations. J Market Res 8(1):1274–1287

    CAS  Google Scholar 

  129. Coupland RM, Thali MJ, Kneubuehl BP (2011) Introduction to wound ballistics. In: Wound Ballistics

  130. Karger B, Nüsse R, Bajanowski T (2002) Backspatter on the firearm and hand in experimental close-range gunshots to the head. Am J Forensic Med Pathol 23(3):211–213

    Article  PubMed  Google Scholar 

  131. Das R, Collins A, Verma A, Fernandez J, Taylor M (2015) Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile. J Forensic Sci 60(3):627–637

    Article  PubMed  Google Scholar 

  132. Davidson PL, Taylor MC, Wilson SJ, Walsh KA, Kieser JA (2012) Physical components of soft-tissue ballistic wounding and their involvement in the generation of blood backspatter. J Forensic Sci 57(5):1339–1342

    Article  PubMed  Google Scholar 

  133. Braga FD, Bolzan LT, Ramos F, Monteiro SN, Lima EP, da Silva LC (2017) Ballistic Efficiency of Multilayered Armor Systems with Sisal Fiber Polyester Composites. Mater Res-Ibero-Am J Mater 20:767–774

    Google Scholar 

  134. Nascimento LFC, Louro LHL, Monteiro SN, Gomes AV, Marçal RLSB, Júnior L, Pereira É, Margem JI (2017) Ballistic performance of mallow and jute natural fabrics reinforced epoxy composites in multilayered armor. Mater Res 20:399–403

    Article  Google Scholar 

  135. Braga FD, Bolzan LT, da Luz FS, Lopes P, Lima EP, Monteiro SN (2017) High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates. J Mater Res Technol-Jmr&T 6(4):417–422

    Article  CAS  Google Scholar 

  136. Cooper G, Gotts P (2005) Ballistic protection, Springer pp. 67–90

  137. Medvedovski E (2010) Ballistic performance of armour ceramics: Influence of design and structure Part 1. Ceram Int 36(7):2103–2115

    Article  CAS  Google Scholar 

  138. Shokrieh MM, Javadpour GH (2008) Penetration analysis of a projectile in ceramic composite armor. Compos Struct 82(2):269–276

    Article  Google Scholar 

  139. Monteiro SN, Braga FD, Lima E, Louro LHL, Drelich JW (2017) Promising curaua fiber-reinforced polyester composite for high-impact ballistic multilayered armor. Polym Eng Sci 57(9):947–954

    Article  CAS  Google Scholar 

  140. de Assis FS, Pereira AC, da Costa Garcia F, Lima Filho ÉP, Monterio SN, Weber RP (2018) Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor. J Mater Res Technol 7(4):535–540

    Article  CAS  Google Scholar 

  141. de Oliveira Braga F, Milanezi TL, Monteiro SN, Louro LHL, Gomes AV, Lima ÉP Jr (2018) Ballistic comparison between epoxy-ramie and epoxy-aramid composites in Multilayered Armor Systems. J Mater Res Technol 7(4):541–549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank University of Malaya for providing financial support via Faculty Research Grant (GPF017A-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yew Hoong Wong.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odesanya, K.O., Ahmad, R., Jawaid, M. et al. Natural Fibre-Reinforced Composite for Ballistic Applications: A Review. J Polym Environ 29, 3795–3812 (2021). https://doi.org/10.1007/s10924-021-02169-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02169-4

Keywords

Navigation