Skip to main content
Log in

Experimental and Numerical Investigation of Sound Radiation from Thin Metal Plates with Different Thickness Values of Free Layer Damping Layers

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Sound radiation from thin metal plates has consistently been recognized as a severe noise problem. One of the most popular approaches to suppressing this noise is applying viscoelastic layers, also called free layer damping (FLD), on the plate surface, which can damp the structural motion and minimize the radiated sound. The thickness of the FLD is an important parameter. It needs to be optimized for the target acoustic limits through numerical simulations, as the total mass and the costs may rise unnecessarily. This paper investigates the sound radiation from thin metals of particular sizes with different thickness values of FLD. A unique test setup was established to measure vibration and sound for three different sized plates, with each one having three different FLD thicknesses, namely, 0.5 mm, 0.75 mm, and 1 mm. In parallel, vibro-acoustic analyses were performed for the same configurations using the finite element method. The damping of the FLD was defined using the Rayleigh damping model, of which coefficients were obtained through a prediction formula developed earlier by the authors. After validating the model with the test, the effect of FLD on the extended acoustic parameters (radiated sound power, directivity) was also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang, J., Xia, S., Ye, S., Xu, B., Song, W., Zhu, S., Tang, H., Xiang, J.: Experimental investigation on the noise reduction of an axial piston pump using free-layer damping material treatment. Appl. Acoust. 139, 1–7 (2018). https://doi.org/10.1016/j.apacoust.2018.04.013

    Article  Google Scholar 

  2. Fan, R., Meng, G., Yang, J., He, C.: Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles. J. Sound Vib. 319, 58–76 (2009). https://doi.org/10.1016/j.jsv.2008.03.071

    Article  Google Scholar 

  3. Fu, Q., Lundin, D., Nicolescu, C.M.: Anti-vibration engineering in internal turning using a carbon nanocomposite damping coating produced by PECVD process. J. Mater. Eng. Perform. 23, 506–517 (2014). https://doi.org/10.1007/s11665-013-0781-y

    Article  Google Scholar 

  4. Zou, D., Crocker, M.J.: Sound power radiated from rectangular plates. Arch. Acoust. 39, 25–39 (2009)

    Google Scholar 

  5. Titze, M., Misol, M., Monner, H.P.: Examination of the vibroacoustic behavior of a grid-stiffened panel with applied passive constrained layer damping. J. Sound Vib. 453, 174–187 (2019). https://doi.org/10.1016/j.jsv.2019.03.021

    Article  Google Scholar 

  6. Wrona, S., Pawelczyk, M., Qiu, X.: Shaping the acoustic radiation of a vibrating plate. J. Sound Vib. 476, 115285 (2020). https://doi.org/10.1016/j.jsv.2020.115285

    Article  Google Scholar 

  7. Rdzanek, W.P., Zawieska, W.M.: Vibroacoustic analysis of a simply supported rectangular plate of a power transformer casing. http://acoustics.ippt.pan.pl/index.php/aa/article/view/450 (2003)

  8. Xie, G., Thompson, D.J., Jones, C.J.C.: The radiation efficiency of baffled plates and strips. J. Sound Vib. 280, 181–209 (2005). https://doi.org/10.1016/j.jsv.2003.12.025

    Article  Google Scholar 

  9. Bowyer, E.P., Krylov, V.V.: Experimental study of sound radiation by plates containing circular indentations of power-law profile. Appl. Acoust. 88, 30–37 (2015). https://doi.org/10.1016/j.apacoust.2014.07.014

    Article  Google Scholar 

  10. Du, S., An, F., Liu, B.: On the sound transmission loss of finite plates with constrained viscoelastic layer. Appl. Acoust. 149, 32–38 (2019). https://doi.org/10.1016/j.apacoust.2019.01.010

    Article  Google Scholar 

  11. Qin, Q., Sheng, M., Wang, M., Wang, C., He, Y.: Sound radiation from plates with elastic boundary conditions embedded in an infinite perforated rigid baffle. J. Sound Vib. 479, 115361 (2020). https://doi.org/10.1016/j.jsv.2020.115361

    Article  Google Scholar 

  12. Wodtke, H.W., Lamancusa, J.S.: Sound power minimization of circular plates through damping layer placement. J. Sound Vib. 215, 1145–1163 (1998). https://doi.org/10.1006/jsvi.1998.1660

    Article  Google Scholar 

  13. Wang, S., Zhang, J., Li, Q., Su, J., Liang, S.: Vibration of co-cured composite structures with different numbers of viscoelastic damping membranes. Compos. Struct. 247, 112434 (2020). https://doi.org/10.1016/j.compstruct.2020.112434

    Article  Google Scholar 

  14. Chatterjee, A., Ranjan, V., Azam, M.S.: Mathematical modeling for estimation of acoustic radiation from clamped free tapered annular circular plate having different parabolically varying thickness. Vibroeng. Procedia 21, 161–167 (2018). https://doi.org/10.21595/vp.2018.19826

    Article  Google Scholar 

  15. Sadri, M., Younesian, D.: Vibroacoustic analysis of a sandwich panel coupled with an enclosure cavity. Compos. Struct. 146, 159–175 (2016). https://doi.org/10.1016/j.compstruct.2016.03.024

    Article  Google Scholar 

  16. Agarwal, S., Dash, B., Saini, P., Sharma, N., Ranjan Mahapatra, T., Kumar Panda, S.: Vibroacoustic analysis of un-baffled layered composite plate under thermal environment. Mater. Today Proc. 24, 1020–1028 (2020). https://doi.org/10.1016/j.matpr.2020.04.415

    Article  Google Scholar 

  17. Sharma, N., Mahapatra, T.R., Panda, S.K.: Numerical study of vibro-acoustic responses of un-baffled multi-layered composite structure under various end conditions and experimental validation. Lat. Am. J. Solids Struct. 14, 1547–1568 (2017). https://doi.org/10.1590/1679-78253830

    Article  Google Scholar 

  18. Zhang, H., Ding, X., Li, H., Xiong, M.: Multi-scale structural topology optimization of free-layer damping structures with damping composite materials. Compos. Struct. 212, 609–624 (2019). https://doi.org/10.1016/j.compstruct.2019.01.059

    Article  Google Scholar 

  19. Unruh, O.: Influence of inhomogeneous damping distribution on sound radiation properties of complex vibration modes in rectangular plates. J. Sound Vib. 377, 169–184 (2016). https://doi.org/10.1016/j.jsv.2016.05.009

    Article  Google Scholar 

  20. Ma, L., Cheng, L.: Topological optimization of damping layout for minimized sound radiation of an acoustic black hole plate. J. Sound Vib. 458, 349–364 (2019). https://doi.org/10.1016/j.jsv.2019.06.036

    Article  Google Scholar 

  21. Wang, Y., Qin, X., Huang, S., Lu, L., Zhang, Q., Feng, J.: Structural-borne acoustics analysis and multi-objective optimization by using panel acoustic participation and response surface methodology. Appl. Acoust. 116, 139–151 (2017). https://doi.org/10.1016/j.apacoust.2016.09.013

    Article  Google Scholar 

  22. Vieira, F.S., Araújo, A.L.: Optimization and modelling methodologies for electro-viscoelastic sandwich design for noise reduction. Compos. Struct. 235, 111778 (2020). https://doi.org/10.1016/j.compstruct.2019.111778

    Article  Google Scholar 

  23. Khorshidi, K., Pagoli, M.: Analytical solution for sound radiation of vibrating circular plates coupled with piezo-electric layers. Mech. Adv. Compos. Struct.‎ 3, 89–98 (2016)

    Google Scholar 

  24. Assaf, S., Guerich, M., Cuvelier, P.: Vibration and acoustic response of damped sandwich plates immersed in a light or heavy fluid. Comput. Struct. 88, 870–878 (2010). https://doi.org/10.1016/j.compstruc.2010.04.006

    Article  Google Scholar 

  25. Wang, G., Li, W., Liu, T.: The average radiation efficiency of a plate immersed in water with general boundary conditions. Mech. Res. Commun. 106, 103532 (2020). https://doi.org/10.1016/j.mechrescom.2020.103532

    Article  Google Scholar 

  26. Guenfoud, N., Droz, C., Ichchou, M.N., Bareille, O., Deckers, E., Desmet, W.: On the multi-scale vibroacoustic behavior of multi-layer rectangular core topology systems. Mech. Syst. Signal Process. 143, 106629 (2020). https://doi.org/10.1016/j.ymssp.2020.106629

    Article  Google Scholar 

  27. Fu, T., Chen, Z., Yu, H., Li, C., Liu, X.: An analytical study of the vibroacoustic response of a ribbed plate. Aerosp. Sci. Technol. 73, 96–104 (2018). https://doi.org/10.1016/j.ast.2017.11.047

    Article  Google Scholar 

  28. Wu, J.W., Huang, L.Z.: Natural frequencies and acoustic radiation mode amplitudes of laminated composite plates based on the layerwise FEM. Int. J. Acoust. Vib. 18, 134–140 (2013)

    Google Scholar 

  29. Arenas, J.P., Hornig, K.H.: Sound power radiated from rectangular plates with unconstrained damping layers. In: Proceedings of the Ninth International Conference on Computational Structures Technology (2008)

  30. Pirk, R., Jonckheere, S., Pluymers, B., Desmet, W.: Vibro-acoustic modeling and validation using viscoelastic material. Comptes Rendus - Mec. 345, 208–220 (2017). https://doi.org/10.1016/j.crme.2017.01.001

    Article  Google Scholar 

  31. ASTM E756: Standard Test Method for Measuring Vibration-Damping Properties of Materials (1998)

  32. Rak, M., Ichchou, M.: Determination of loss factor for beams with viscoelastic layer by means of methods based on wave propagation. In: II Eccomas Thematic Conference on Smart Structures and Materials (2005)

  33. Sim, S., Kim, K.-J.: A method to determine the complex modulus and poisson’s ratio of viscoelastic materials for FEM applications. J. Sound Vib. 141, 71–82 (1990). https://doi.org/10.1016/0022-460X(90)90513-Y

    Article  Google Scholar 

  34. Yılmaz, İ, Arslan, E., Kızıltaş, E.Ç., Çavdar, K.: Development of a prediction method of Rayleigh damping coefficients for free layer damping coatings through machine learning algorithms. Int. J. Mech. Sci. 166, 105237 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105237

    Article  Google Scholar 

  35. ANSYS: Harmonic Acoustics Analysis. Mech. Appl. User’s Guid. (2020)

  36. Maidanik, G.: Response of ribbed panels to reverberant acoustic fields. J. Acoust. Soc. Am. 34, 809–826 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlhan Yılmaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, İ., Arslan, E. & Çavdar, K. Experimental and Numerical Investigation of Sound Radiation from Thin Metal Plates with Different Thickness Values of Free Layer Damping Layers. Acoust Aust 49, 459–472 (2021). https://doi.org/10.1007/s40857-021-00241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-021-00241-6

Keywords

Navigation