Skip to main content
Log in

Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of Propane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An equation of state that predicts the thermodynamic behavior of propane is formulated. This equation takes into account the global behavior that includes the singular thermodynamic behavior asymptotically close to the critical point and the crossover to the regular thermodynamic behavior far away from the critical point. The formulated equation based on the transformation of a truncated classical Landau expansion. This equation of state (EOS) can represent the thermodynamic properties of propane in a wide range of temperatures and densities around the critical point. Comparisons of the pressure PρT data measured by Mark Mclinden of NIST group calculated with crossover EOS and those computed by the EOS of Eric Lemmon and selected results of other experimentalists are presented, as well as the isochoric-specific heat data measured by Abdulagatov et al. of the Russian groups are presented. We also give the comparison with a set of isobaric-specific heat data of Yesavage et al. The description of the rectilinear diameter singularity near the critical point is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.W. Lemmon, M.O. McLinden, W. Wagner, J. Chem. Eng. Data 54, 3141–3180 (2009)

    Article  Google Scholar 

  2. M.O. McLinden, J. Chem. Eng. Data 54, 3181–3191 (2009)

    Article  Google Scholar 

  3. A.S. Teja, A. Singh, Cryogenics 17, 591–596 (1977)

    Article  ADS  Google Scholar 

  4. R.D. Goodwin, W.M. Haynes, Natl. Bur. Stand. Monogr. 170, 249 (1982)

    Google Scholar 

  5. H. Kratzke, S. Muller, J. Chem. Thermodyn. 16, 1157–1174 (1984)

    Article  Google Scholar 

  6. B.A. Younglove, J.F. Ely, J. Phys Chem. Ref. Data 16, 577–798 (1987)

    Article  ADS  Google Scholar 

  7. V.V. Sychev, A. A. Vasserman, A. D. Kozlov, V. Tsymarny, A. Thermodynamic Properties of Propane, United States (1991)

  8. H. Miyamoto, K. Watanabe, Int. J. Thermophys. 21, 1045–1072 (2000)

    Article  Google Scholar 

  9. R. Span, W. Wagner, Int. J. Thermophys. 24, 41–109 (2003)

    Article  Google Scholar 

  10. Z.Y. Chen, A. Abbaci, S. Tang, J.V. Sengers, Phys. Rev. A 42, 4470–4484 (1990)

    Article  ADS  Google Scholar 

  11. A. Abbaci, Ph.D. Thesis, University of Maryland at College Park (1991)

  12. A. Abbaci, J. Mol. Liq. 18, 31–36 (2005)

    Article  Google Scholar 

  13. A. Abbaci, A. Berrezeg, Int. J. Thermophys. 25, 739–752 (2004)

    Article  ADS  Google Scholar 

  14. A. Rizi, A. Abbaci, J. Mol. Liq. 17(1), 64–70 (2012)

    Article  Google Scholar 

  15. A. Abbaci, A. Rizi, I.M. Abdulagatov, Thermochim. Acta 567, 65–72 (2013)

    Article  Google Scholar 

  16. J.V. Sengers, J.M.H. Sengers Levelt, Ann. Rev. Phys. Chem. 37, 189–222 (1986)

    Article  ADS  Google Scholar 

  17. J.V. Sengers, J.M.H. Levelt Sengers, Int. J. Thermophys. 5, 4195–4208 (1984)

    Article  Google Scholar 

  18. J.F. Nicoll, Phys. Rev. A 24, 2203–2220 (1981)

    Article  ADS  Google Scholar 

  19. J.F. Nicoll, P.C. Albright, Phys. Rev. B 31, 4576–4589 (1985)

    Article  ADS  Google Scholar 

  20. H.H. Reamer, B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 41, 482–884 (1949)

    Article  Google Scholar 

  21. R.H.P. Thomas, R.H. Harrison, J. Chem. Eng. Data 27, 1–11 (1982)

    Article  Google Scholar 

  22. H. Kratzke, S. Müller, J. Chem. Thermodyn. 16, 1157–1174 (1984)

    Article  Google Scholar 

  23. D.R. Defibaugh, M.R. Moldover, J. Chem. Eng. Data 42, 160–168 (1997)

    Article  Google Scholar 

  24. P. Claus, G. Schilling, R. Kleinrahm, W. Wagner, Internal Report, Ruhr-Universität, Bochum (2002) (Data reported by Glos et al. 2004)

  25. S. Glos, R. Kleinrahm, W. Wagner, J. Chem. Thermodyn. 36, 1037–1059 (2004)

    Article  Google Scholar 

  26. H. Miyamoto, M. Uematsu, Int. J. Thermophys. 27, 1052–1060 (2006)

    Article  ADS  Google Scholar 

  27. G. Straty, A. Palavra, J. Res. Natl. Bur. Stand 89, 375–383 (1984)

    Article  Google Scholar 

  28. R.D. Goodwin, J. Res. Natl. Bur. Stand 83, 449–458 (1978)

    Article  Google Scholar 

  29. M.A. Anisimov, V.G. Beketov, V.P. Voronov, V.B. Nagaev, V.A. Smirnov, Thermophys. Prop. Subs. 16, 48–59 (1982)

    Google Scholar 

  30. H. Kitajima, N. Kagawa, S. Tsuruno, Int. J. Thermophys. 26, 1733–1742 (2005)

    Article  ADS  Google Scholar 

  31. I.M. Abdulagatov, S.B. Kiselev, L.N. Levina, Z.R. Zakaryaev, O.N. Mamchenkova, Int. J. Thermophys. 17, 423–440 (1996)

    Article  ADS  Google Scholar 

  32. B.H. Sage, D. Webster, W. Lacey, Ind. Eng. Chem. 29, 1309–1314 (1937)

    Article  Google Scholar 

  33. V.F. Yesavage, D.L. Katz, J.E. Powers, J. Chem. Eng. Data 14, 197–204 (1969)

    Article  Google Scholar 

  34. G. Ernst, J. Büsser, J. Chem. Thermodyn. 2, 787–791 (1970)

    Article  Google Scholar 

  35. J. Lammers, P. van Kasteren, G. Kroon, H. Zeldenrust, in: Proc. 57th Ann. Conf. Gas Proc. Assoc (1978)

  36. P.H. van Kasteren, H. Zeldenrust, Ind. Eng. Chem. Fundam. 18, 339–345 (1979)

    Article  Google Scholar 

  37. C. Bervillier, C. Godreche, Phys. Rev. B 21, 5427–5431 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  38. B. Le Neindre, Y. Garrabos, Fluid Phase Equilib. 198, 165–183 (2002)

    Article  Google Scholar 

  39. S.B. Kiselev, J.C. Rainwater, M.L. Huber, Fluid Phase Equilib. 151, 469–478 (1998)

    Article  Google Scholar 

  40. S. Ladjama, A. Abbaci, Eur. Phys. J. Special Topics 226, 967–975 (2017)

    Article  ADS  Google Scholar 

  41. C. D. Holcomb, J. W. Magee, W. M Haynes, Gas Processors Association, Research Report RR-147. Technical Report (1995)

Download references

Acknowledgments

The authors are indebted to Eric Lemmon from the NIST in Boulder and to Professor I. M. Abdullagatov for providing us the thermophysical properties data of propane. Further, the authors acknowledge the financial support of the DGRST project under the Algerian-Tunisian bilateral program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azzedine Abbaci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladjama, S., Abbaci, A. & Rizi, A. Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of Propane. Int J Thermophys 42, 105 (2021). https://doi.org/10.1007/s10765-021-02833-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02833-w

Keywords

Navigation