Skip to main content
Log in

Numerical Investigation of Anisotropic Conductivity of Date Palm Fiber Bundle Composite

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Date palm fiber bundle includes lumens in solid region, which present low thermal conductivity than that of fiber bundle. In this work, the transverse thermal conductivity of date palm fiber bundle was determined by numerical software to investigate the relation between the bundle fiber and the solid region thermophysical properties. Therefore, the results determined from the numerical investigation were compared to the analytical model to prove the numerical model developed in this study. In this context, numerical simulation of thermal conductivity was performed by the numerical finite element method by COMSOL software. To verify the developed models, the bundle fiber and solid region thermal conductivity relation were determined. Quadratic and Cubic polynomial expressions, were used to study the influence of the normalized conductivity of the bundle fiber and the solid region of the composite material and to evaluate the composites thermal conductivity. Influence of lumen on the thermal conductivity was also investigated in this work. The results indicate that the bundle fiber thermal conductivity is much less than that of the solid region thermal conductivity. This one depends on pore dimension, but not on distribution and shape of pore. The numerical results obtained from the model developed in this study are compared with analytical model to validate this model. Finally, a sensitivity analysis was conducted with the models to investigate how changes in the values of important variables, such as thermal conductivity and volume fraction of the constituent, can affect the effective thermal properties of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

T sup :

Superior temperature (K)

T inf :

Inferior temperature (K)

Q :

Heat flux (W)

H :

Matrix width (m)

L :

Matrix length (m)

k :

Thermal conductivity (W m−1·K)

k S :

Thermal conductivity of solid region (W m−1·K)

k l :

Thermal conductivity of lumen (W m−1·K)

k fb :

Thermal conductivity of fiber (W m−1·K

Reference

  1. M. P. M. Prasad, B. Vinod, D. L. J. Sudev, Inter. J. Sci. Tech. 2, 275–280 (2014)

    Google Scholar 

  2. B. Agoudjil, A. Benchabane, A. Boudenne, L. Ibos, M. Fois, Energy Build. 43, 491–497 (2011)

    Article  Google Scholar 

  3. M. Haddadi, B. Agoudjil, N. Benmansour, A. Boudenne, B. Garnier, Polym. Compos. (2015). https://doi.org/10.1002/pc.23741

    Article  Google Scholar 

  4. G. Bauer, T. Speck, J. Blomer, J. Bertling, O. Speck, J. Mater. Sci. 45, 5950–5959 (2010)

    Article  ADS  Google Scholar 

  5. G.-Y. Zheng, Math. Probl. Eng. 1–8 (2014)

  6. N.M. Stark, R.E. Rowlands, Wood Fiber Sci. 35, 167–174 (2003)

    Google Scholar 

  7. F.D.A. Silva, N. Chawla, R.D.D.T. Filho, Compos. Sci. Technol. 68, 3438–3443 (2008)

    Article  Google Scholar 

  8. K. Liu, H. Takagi, Z. Yang, Mater. Des. 32, 4586–4589 (2011)

    Article  Google Scholar 

  9. H.P.S.A. Khalil, I.U.H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, Y.S. Hadi, Mater. Des. 42, 353–368 (2012)

    Article  Google Scholar 

  10. A. Alawar, A.M. Hamed, K. Al-Kaabi, Compos. B. Eng. 40, 601–606 (2009)

    Article  Google Scholar 

  11. H. Akil, M. Omar, A. Mazuki, S. Safiee, Z.A.M. Ishak, A.A. Bakar, Mater. Des. 32, 4107–4121 (2011)

    Article  Google Scholar 

  12. Y.A. El-Shekeil, S.M. Sapuan, K. Abdan, E.S. Zainudin, N. Chawla, Mater. Des. 40, 299–303 (2012)

    Article  Google Scholar 

  13. R. Mangal, N.S. Saxena, M.S. Sreekala, S. Thomas, K. Singh, Mater. Sci. Eng. A 339, 281–285 (2003)

    Article  Google Scholar 

  14. T. Behzad, M. Sain, Compos. Sci. Technol. 67, 1666–1673 (2007)

    Article  Google Scholar 

  15. H. Wang, Y. Xiao, Q.-H. Qin, Sci. Iran. B. 23, 268–276 (2016)

    Google Scholar 

  16. R. Islam, A. Pramila, J. Compos. Mater. 33, 1699–1715 (1999)

    Article  ADS  Google Scholar 

  17. H. Wang, Q.H. Qin, Eng. Comput. 28, 1079–1097 (2011)

    Article  Google Scholar 

  18. K.Liu, H. Takagi, Z. Yang, Mater. Des. 32, 4586–4589 (2011)

    Article  Google Scholar 

  19. L. Qiu, Y. Ouyang, Y. Feng, X. Zhang, Rev. Sci. Instrum. 89, 96112 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted by the LPEA laboratory in El Hadj Lakhdar University. The authors would like to acknowledge the support from the members of the applied energy physics laboratory

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haddadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddadi, M., Agoudjil, B. & Boudenne, A. Numerical Investigation of Anisotropic Conductivity of Date Palm Fiber Bundle Composite. Int J Thermophys 42, 102 (2021). https://doi.org/10.1007/s10765-021-02838-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02838-5

Keywords

Navigation