Skip to main content

Advertisement

Log in

Exergic Analysis of an ISCC System for Power Generation and Refrigeration

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Exergic analysis has become an effective method of thermodynamic behavior evaluation for power systems. The current study focuses on an integrated solar–gas combined cycle (ISCC) system for electric power generation and refrigeration. Exergic analysis of the ISCC system is conducted by using the gray-box model as well as the Ebsilon software. The results show that under the rated working condition, the total exergy loss and overall exergy efficiency of the ISCC system are 119.078 MW and 44.63  %. The two largest exergy losses exist in the combustion chamber and solar DSG system, which are 56.45 MW and 28.52 MW, respectively. The LiBr–H2O absorption chiller system, HRSG, steam turbine and condenser have the same grade exergy losses. When the solar intensity augments, though the solar DSG system has an increase in the exergy efficiency, its exergy loss also increases, leading to the increase in the total exergy loss as well as the decrease in the overall exergy efficiency of the ISCC system. Therefore, further optimizations of the ISCC system should focus on the improvements of the solar DSG system and combustion chamber. The economic and ecological evaluations demonstrate that the ISCC system is economically feasible and ecologically friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AC:

Absorption chiller

CFP:

Coal-fired power

DNI:

Direct normal irradiance

DSG:

Direct steam generator

GT:

Gas turbine

HPC:

High-pressure cylinder

HRSG:

Heat recovery steam generator

HWH:

Hot water heater

ISCC:

Integrated solar combined cycle

LPC:

Low-pressure cylinder

ST:

Steam turbine

GTCC:

Gas–steam turbine combined cycle

A an :

Conversion value of annual project investment cost (yuan)

C an :

Annual operating costs (yuan)

CF x :

Pollutant emission factor of standard coal (t·tce−1)

C o-m :

Annual operation and maintenance costs (yuan)

C npv :

Net present value (yuan)

E cfp :

Standard coal consumption of the CFP system (g·kWh−1)

ELC rate :

Electricity price (yuan·kWh−1)

E r :

Relative error (−)

E x + :

Exergy supply (MW)

E x- :

Effective exergy (MW)

E x,loss :

Exergy loss (MW)

E x,l :

Exergy loss (MW)

F an :

Annual fuel costs of the ISCC plant (yuan)

F x :

Annual pollutant emission reduction of the ISCC system (t)

G in :

Total project investment cost (yuan)

G iscc-x :

Pollutant emission quantity of the ISCC system (t)

G cfp-x :

Pollutant emission quantity of the CFP system (t)

h :

Specific enthalpy (kJ·kg−1)

h 0 :

Specific enthalpy of water in reference environmental state (kJ·kg−1)

IF x :

Pollutant emission factor of the ISCC system (mg·m−3)

IN an :

Annual income (yuan)

LHV :

Lower heat value (kJ·kg−1)

P back :

Dynamic investment payback period (year)

P gt :

Electric power generated by the gas turbine (MW)

P iscc :

Output electric power of the ISCC system (MW)

P s :

Electric power contributed by the solar DSG (MW)

P st :

Electric power generated by the steam turbine (MW)

Q solar :

Thermal power contributed by solar energy (MW)

Q fuel :

Thermal power contributed by natural gas (MW)

S :

Specific entropy (kJ·(kg·°C)−1)

S 0 :

Specific entropy of water in the reference environmental state (kJ·(kg·°C)−1)

T 0 :

Reference environmental temperature (K)

T s :

Solar surface temperature (K)

V gas :

Volumetric flow rate of gas of the ISCC system (m3·h−1)

W an :

Annual power generating capacity (kWh)

W c :

Energy consumption of the air compressor (MW)

W fp :

Energy consumption of the condensate pump (MW)

W lp :

Energy consumption of the feed water pump (MW)

W sh :

Output power of the gas turbine (MW)

η exe :

Exergy efficiency (−)

η exe -iscc :

Exergy efficiency of the ISCC system (−)

η overall :

Overall energy efficiency of the ISCC system (−)

ψ :

Solar energy grade (−)

an:

Annual

cfp:

Coal-fired power

exe:

Exergy

gt:

Gas turbine

iscc:

Integrated solar and gas combined cycle

s:

Solar

st:

Steam turbine

References

  1. M.T. Islam, N. Huda, A.B. Abdullah et al., Renew. Sust. Energy Rev. 91, 987–1018 (2018)

    Article  Google Scholar 

  2. G. Wang, Y. Yao, Z. Chen et al., Energy 166, 256–266 (2019)

    Article  Google Scholar 

  3. A. Zahedi, Renew. Sust. Energy Rev. 15, 1609–1614 (2011)

    Article  Google Scholar 

  4. I.R. Goic, Renew. Sust. Energy Rev. 15, 1625–1636 (2011)

    Article  Google Scholar 

  5. H.L. Zhang, J. Baeyens, J. Degrève et al., Renew. Sust. Energy Rev. 22, 466–481 (2013)

    Article  Google Scholar 

  6. G. Wang, S. Yu, S. Niu et al., Appl. Therm. Eng. 170, 115010 (2020)

    Article  Google Scholar 

  7. J.H. Peterseim, S. White, A. Tadros et al., Renew. Energy 57, 520–532 (2013)

    Article  Google Scholar 

  8. S. Peng, H. Hong, H. Jin et al., Energy 44, 732–740 (2012)

    Article  Google Scholar 

  9. D. Jurgen, M. Geyer, U. Herrmann et al., Energy 29, 947–959 (2004)

    Article  Google Scholar 

  10. U. Sahoo, R. Kumar, P.C. Pant et al., Sol. Energy 139, 47–57 (2016)

    Article  ADS  Google Scholar 

  11. Y. Li, J. Yuan, Y. Yang, Energy Procedia 61, 29–32 (2014)

    Article  Google Scholar 

  12. G.C. Bakos, D. Parsa, Renew. Energy 60, 598–603 (2013)

    Article  Google Scholar 

  13. H. Nezammahalleh, F. Farhadi, M. Tanhaemami, Sol. Energy 84, 1696–1705 (2010)

    Article  ADS  Google Scholar 

  14. A. Rovira, M.J. Montes, F. Varela et al., Appl. Therm. Eng. 52, 264–274 (2013)

    Article  Google Scholar 

  15. L. Achour, M. Bouharkat, O. Behar, Energy Rep. 4, 207–217 (2018)

    Article  Google Scholar 

  16. A. Rovira, R. Barbero, Appl. Energy 162, 990–1000 (2016)

    Article  Google Scholar 

  17. P. Iora, G.P. Beretta, A.F. Ghoniem, Energy 173, 893–901 (2019)

    Article  Google Scholar 

  18. H. Nezammahalleh, Int. J. Exergy 16, 72–96 (2015)

    Article  Google Scholar 

  19. L. Talens, G. Villalba, X. Gabarrell, Resour. Conserv. Recy. 51, 397–407 (2007)

    Article  Google Scholar 

  20. M.V. Rocco, E. Colombo, E. Sciubba, Appl. Energy 113, 1405–1420 (2014)

    Article  Google Scholar 

  21. A. Bejan, Int. J. Energy Res. 26, 545–565 (2002)

    Google Scholar 

  22. T.K. Ibrahim, F. Basrawi, O.I. Awad et al., Appl. Therm. Eng. 115, 977–985 (2017)

    Article  Google Scholar 

  23. A. Baghernejad, M. Yaghoubi, Energy Convers. Manag. 52, 2190–2203 (2011)

    Article  Google Scholar 

  24. A. Baghernejad, M. Yagboubi, Renew. Energy 35, 2157–2164 (2010)

    Article  Google Scholar 

  25. M. Ameri, M. Mohammadzadeh, Sust. Energy Technol. Assess. 27, 192–205 (2018)

    Google Scholar 

  26. G. Wang, Y. Cao, S. Wang et al., Appl. Therm. Eng. 172, 115184 (2020)

    Article  Google Scholar 

  27. E. Bellos, C. Tzivanidis, I. Daniil et al., Energy Convers. Manag. 135, 35–54 (2017)

    Article  Google Scholar 

  28. J. Pátek, J. Klomfar, Int. J. Refrig. 29, 566–578 (2005)

    Article  Google Scholar 

  29. Z. Xin, T. Hong, Y. Da, Build. Simul. 7, 21–33 (2014)

    Article  Google Scholar 

  30. G. Wang, S. Wang, T. Jiang et al., Case Stud. Therm. Eng. 25, 100929 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, S., Lin, J. et al. Exergic Analysis of an ISCC System for Power Generation and Refrigeration. Int J Thermophys 42, 101 (2021). https://doi.org/10.1007/s10765-021-02852-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02852-7

Keywords

Navigation