Skip to main content

Advertisement

Log in

The role of HIF-1α in BCG-stimulated macrophages polarization and their tumoricidal effects in vitro

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

BCG is widely used for cancer treatment, where macrophages play an important role. However, the mechanism of BCG affecting macrophages remains poorly understood. In this study, we used BCG to stimulate myeloid-derived macrophages lacking HIF-1α, the levels of TNF-α, IL-1β, CD86 of macrophages and their effects on the growth of tumor cells MCA207 and B16-F10 were detected. We found that the absence of HIF-1α prevents BCG-stimulated macrophages from polarizing towards the M (BCG) and attenuating its killing effect on tumor cells. In addition, we demonstrated that the tumors of mice lacking HIF-1α in macrophages were significantly increased by the experiment of mice transplantation. Our study provides relevant evidence for exploring the mechanism of the BCG vaccine in the prevention and treatment of related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Old LJ, Clarke DA, Benacerraf B (1959) Effect of bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 184(5):291–292. https://doi.org/10.1038/184291a0

    Article  PubMed  Google Scholar 

  2. Dobosz P, Dzieciątkowski T (2019) The intriguing history of cancer immunotherapy. Front Immunol 10:2965. https://doi.org/10.3389/fimmu.2019.02965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morales A, Eidinger D, Bruce AW (1976) Intracavitary bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 116(2):180–183. https://doi.org/10.1016/s0022-5347(17)58737-6

    Article  CAS  PubMed  Google Scholar 

  4. Sloot S, Rashid OM, Sarnaik AA, Zager JS (2016) Developments in intralesional therapy for metastatic melanoma. Cancer Control: J Moffitt Cancer Center 23(1):12–20. https://doi.org/10.1177/107327481602300104

    Article  Google Scholar 

  5. Taniguchi K, Koga S, Nishikido M, Yamashita S, Sakuragi T, Kanetake H, Saito Y (1999) Systemic immune response after intravesical instillation of bacille Calmette-Guérin (BCG) for superficial bladder cancer. Clin Exp Immunol 115(1):131–135. https://doi.org/10.1046/j.1365-2249.1999.00756.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siracusano S, Vita F, Abbate R, Ciciliato S, Borelli V, Bernabei M, Zabucchi G (2007) The role of granulocytes following intravesical BCG prophylaxis. Eur Urol 51(6):1589–1597. https://doi.org/10.1016/j.eururo.2006.11.045 (discussion 1597–1589)

    Article  PubMed  Google Scholar 

  7. Brandau S, Suttmann H, Riemensberger J, Seitzer U, Arnold J, Durek C, Jocham D, Flad HD, Böhle A (2000) Perforin-mediated lysis of tumor cells by mycobacterium bovis bacillus Calmette-Guérin-activated killer cells. Clin Cancer Res: Off J Am Assoc Cancer Res 6(9):3729–3738

    CAS  Google Scholar 

  8. De Boer E, De Jong W, Van Der Meijden A, Steerenberg P, Witjes J, Vegt P, Debruyne F, Ruitenberg EJCI (1991) Presence of activated lymphocytes in the urine of patients with superficial bladder cancer after intravesical immunotherapy with bacillus Calmette-Guérin. Immunotherapy 33(6):411–416

    Google Scholar 

  9. Juhas U, Ryba-Stanisławowska M, Szargiej P, Myśliwska J (2015) Different pathways of macrophage activation and polarization. Postepy Hig Med Dosw (Online) 69:496–502. https://doi.org/10.5604/17322693.1150133

    Article  Google Scholar 

  10. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujisaka S, Usui I, Ikutani M, Aminuddin A, Takikawa A, Tsuneyama K, Mahmood A, Goda N, Nagai Y, Takatsu K, Tobe K (2013) Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice. Diabetologia 56(6):1403–1412. https://doi.org/10.1007/s00125-013-2885-1

    Article  CAS  PubMed  Google Scholar 

  12. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, Tsuneyama K, Nagai Y, Takatsu K, Urakaze M, Kobayashi M, Tobe K (2009) Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58(11):2574–2582. https://doi.org/10.2337/db08-1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J of Immunology (Baltimore, Md: 1950) 181(6):3733–3739. https://doi.org/10.4049/jimmunol.181.6.3733

    Article  CAS  Google Scholar 

  14. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

    Article  CAS  PubMed  Google Scholar 

  15. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  PubMed  Google Scholar 

  16. Biswas SK, Chittezhath M, Shalova IN, Lim JY (2012) Macrophage polarization and plasticity in health and disease. Immunol Res 53(1–3):11–24. https://doi.org/10.1007/s12026-012-8291-9

    Article  CAS  PubMed  Google Scholar 

  17. Chistiakov DA, Bobryshev YV, Nikiforov NG, Elizova NV, Sobenin IA, Orekhov AN (2015) Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol 184:436–445. https://doi.org/10.1016/j.ijcard.2015.03.055

    Article  PubMed  Google Scholar 

  18. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Decker T, Lohmann-Matthes ML, Gifford GE (1987) Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J of Immunology (Baltimore, Md: 1950) 138(3):957–962

    CAS  Google Scholar 

  20. Zhang L, Zhu H, Lun Y, Yan D, Yu L, Du B, Zhu X (2007) Proteomic analysis of macrophages: a potential way to identify novel proteins associated with activation of macrophages for tumor cell killing. Cell Mol Immunol 4(5):359–367

    CAS  PubMed  Google Scholar 

  21. Klimp AH, de Vries EG, Scherphof GL, Daemen T (2002) A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol 44(2):143–161. https://doi.org/10.1016/s1040-8428(01)00203-7

    Article  CAS  PubMed  Google Scholar 

  22. Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, Zhang P, Panek WK, Cordero A, Han Y, Ahmed AU, Chandel NS, Lesniak MS (2019) HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma. Cell Rep 27(1):226-237.e224. https://doi.org/10.1016/j.celrep.2019.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Donnelly RP, Finlay DK (2015) Glucose, glycolysis and lymphocyte responses. Mol Immunol 68(2 Pt C):513–519. https://doi.org/10.1016/j.molimm.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  24. O’Neill LA, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213(1):15–23. https://doi.org/10.1084/jem.20151570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Corcoran SE, O’Neill LA (2016) HIF1α and metabolic reprogramming in inflammation. J Clin Investig 126(10):3699–3707. https://doi.org/10.1172/jci84431

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657. https://doi.org/10.1016/s0092-8674(03)00154-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stothers CL, Luan L, Fensterheim BA, Bohannon JK (2018) Hypoxia-inducible factor-1α regulation of myeloid cells. J Mol Med (Berl) 96(12):1293–1306. https://doi.org/10.1007/s00109-018-1710-1

    Article  CAS  Google Scholar 

  28. Galván-Peña S, O’Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420. https://doi.org/10.3389/fimmu.2014.00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding D, Zhu M, Liu X, Jiang L, Xu J, Chen L, Liang J, Li L, Zhou T, Wang Y, Shi H, Yuan Y, Song E (2018) Inhibition of TRAF6 alleviates choroidal neovascularization in vivo. Biochem Biophys Res Commun 503(4):2742–2748. https://doi.org/10.1016/j.bbrc.2018.08.034

    Article  CAS  PubMed  Google Scholar 

  30. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta pharmaceutica Sinica B 5(5):378–389. https://doi.org/10.1016/j.apsb.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumar P, Tyagi R, Das G, Bhaskar S (2014) Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner. Immunology 143(2):258–268. https://doi.org/10.1111/imm.12306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao X, Liu Q, Du B, Li P, Cui Q, Han X, Du B, Yan D, Zhu X (2012) A novel accessory molecule Trim59 involved in cytotoxicity of BCG-activated macrophages. Mol Cells 34(3):263–270. https://doi.org/10.1007/s10059-012-0089-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Q, Tian Y, Zhao X, Jing H, Xie Q, Li P, Li D, Yan D, Zhu X (2015) NMAAP1 expressed in BCG-activated macrophage promotes M1 macrophage polarization. Mol Cells 38(10):886–894. https://doi.org/10.14348/molcells.2015.0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, Avizonis D, DeBerardinis RJ, Siegel PM, Jones RG (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17(1):113–124. https://doi.org/10.1016/j.cmet.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y, Sarkissyan M, McGhee E, Lee S, Vadgama JV (2015) Combined inhibition of glycolysis and AMPK induces synergistic breast cancer cell killing. Breast Cancer Res Treat 151(3):529–539. https://doi.org/10.1007/s10549-015-3386-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, Miyazawa H, Yamaguchi Y, Miura M, Jenkins DM, Choi H, Kim JW, Asagiri M, Cowburn AS, Abe H, Soma K, Koyama K, Katoh M, Sayama K, Goda N, Johnson RS, Manabe I, Nagai R, Komuro I (2016) HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun 7:11635. https://doi.org/10.1038/ncomms11635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guan F, Lu XJ, Li CH, Chen J (2017) Molecular characterization of mudskipper (Boleophthalmus pectinirostris) hypoxia-inducible factor-1α (HIF-1α) and analysis of its function in monocytes/macrophages. PLoS ONE 12(5):e0177960. https://doi.org/10.1371/journal.pone.0177960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81871245) and Department of Education of Jilin Province (JJKH20190095KJ) and the Fundamental Research Funds for the Central Universities of China. The authors appreciate Dr. Zhinan Yin (The Biomedical Translational Research Institute, Jinan University, Guangzhou 510632 Guangdong, PR China) for providing the HIF-1α cKO mice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Yan or Zehua Dong.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical statements

The animal study was reviewed and approved by Animal Research Committee of Jilin University.

Additional information

Edited by: Volkhard A. J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Hou, Y., Tang, M. et al. The role of HIF-1α in BCG-stimulated macrophages polarization and their tumoricidal effects in vitro. Med Microbiol Immunol 210, 149–156 (2021). https://doi.org/10.1007/s00430-021-00708-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-021-00708-3

Keywords

Navigation