Skip to main content
Log in

Coalescence of Andreev Bound States on the Surface of a Chiral Topological Semimetal

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

We experimentally investigate the magnetic field dependence of Andreev transport through a region of proximity-induced superconductivity in the CoSi topological chiral semimetal. With increasing magnetic field parallel to the CoSi surface, the sharp subgap peaks, associated with Andreev bound states, move together to nearly-zero bias position, while there is only monotonic peaks suppression for normal to the surface fields. The zero-bias \(dV{\text{/}}dI\) resistance value is perfectly stable with changing the in-plane magnetic field. As the effects are qualitatively similar for In and Nb superconducting leads, they reflect the properties of a proximized CoSi surface. The Andreev states coalescence and stability of the zero-bias \(dV{\text{/}}dI\) value with increasing in-plane magnetic field are interpreted as the joined effect of the strong spin–orbit coupling and the Zeeman interaction, known for proximized semiconductor nanowires. We associate the observed magnetic field anisotropy with the recently predicted in-plane polarized spin texture of the Fermi arcs surface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Science (Washington, DC, U. S.) 353, aaf5037 (2016).

  2. P. Tang, Q. Zhou, and Sh.-Ch. Zhang, Phys. Rev. Lett. 119, 206402 (2017).

  3. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).

  4. S. Zhong, J. E. Moore, and I. Souza, Phys. Rev. Lett. 116, 077201 (2016).

  5. P. Rinkel, P. L. S. Lopes, and I. Garate, Phys. Rev. Lett. 119, 107401 (2017).

  6. F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Nat. Commun. 8, 15995 (2017).

    Article  ADS  Google Scholar 

  7. N. B. Schröter, D. Pei, M. G. Vergniory, Y. Sun, K. Manna, F. de Juan, J. A. Krieger, V. Süss, M. Schmidt, P. Dudin, B. Bradlyn, T. K. Kim, Th. Schmitt, C. Cacho, C. Felser, V. N. Strocov, and Y. Chen, Nat. Phys. 15, 759 (2019).

    Article  Google Scholar 

  8. Zh. Rao, H. Li, T. Zhang, et al., Nature (London, U.K.) 567, 496 (2019).

    Article  ADS  Google Scholar 

  9. D. Takane, Zh. Wang, S. Souma, K. Nakayama, T. Nakamura, H. Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K. Horiba, H. Kumigashira, T. Takahashi, Y. Ando, and T. Sato, Phys. Rev. Lett. 122, 076402 (2019).

  10. N. B. M. Schröter, S. Stolz, K. Manna, et al., Science (Washington, DC, U. S.) 369, 179 (2020).

    Article  ADS  Google Scholar 

  11. C. W. J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013).

    Article  ADS  Google Scholar 

  12. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

  13. Y. Li and Zh.-A. Xu, Adv. Quantum. Technol. 2, 1800112 (2019).

  14. G. E. Volovik, JETP Lett. 107, 516 (2018).

    Article  ADS  Google Scholar 

  15. S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. Lett. 93, 156804 (2004).

  16. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

  17. B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).

  18. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 96407 (2008).

    Article  ADS  Google Scholar 

  19. W. Chen, L. Jiang, R. Shen, L. Sheng, B. G. Wang, and D. Y. Xing, Eur. Phys. Lett. 103, 27006 (2013).

    Article  ADS  Google Scholar 

  20. C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006).

  21. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

    Article  ADS  Google Scholar 

  22. A. Chen and M. Franz, Phys. Rev. B 93, 201105 (2016).

  23. Z. Faraei and S. A. Jafari, Phys. Rev. B 100, 035447 (2019).

  24. P. Dutta, F. Parhizgar, and A. M. Black-Schaffer, Phys. Rev. B 101, 064514 (2020).

  25. O. O. Shvetsov, A. Kononov, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, JETP Lett. 107, 774 (2018).

    Article  ADS  Google Scholar 

  26. O. O. Shvetsov, A. Kononov, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Eur. Phys. Lett. 124, 47003 (2018).

    Article  Google Scholar 

  27. O. O. Shvetsov, V. D. Esin, Yu. S. Barash, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Phys. Rev. B 101, 035304 (2020).

  28. A. Kononov, O. O. Shvetsov, S. V. Egorov, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Eur. Phys. Lett. 122, 27004 (2018).

    Article  ADS  Google Scholar 

  29. Y. Huang and Sh.-K. Jian, arXiv: 2009.04654.

  30. Ch.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B 96, 075161 (2017).

  31. D. A. Pshenay-Severin, Y. V. Ivanov, A. A. Burkov, and A. T. Burkov, J. Phys.: Condens. Matter 30, 135501 (2018).

  32. O. O. Shvetsov, V. D. Esin, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Phys. Rev. B 99, 125305 (2019).

  33. D. S.Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T. Liu, G. Li, and J. L. Luo, Chin. Phys. Lett. 36, 077102 (2019).

  34. A. M. Toxen, Phys. Rev. 123, 442 (1961).

    Article  ADS  Google Scholar 

  35. A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

    Google Scholar 

  36. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw–Hill, New York, 1996).

    Google Scholar 

  37. O. O. Shvetsov, Yu. S. Barash, S. V. Egorov, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Eur. Phys. Lett. 132, 67002 (2020).

    Article  ADS  Google Scholar 

  38. L. Banszerus, F. Libisch, A. Ceruti, S. Blien, K. Watanabe, T. Taniguchi, A. K. Hüttel, B. Beschoten, F. Hassler, and Ch. Stampfer, arXiv: 2011.11471.

  39. D. R. Heslinga, S. E. Shafranjuk, H. van Kempen, and T. M. Klapwijk, Phys. Rev. B 49, 10484 (1994).

    Article  ADS  Google Scholar 

  40. J. Wiedenmann, E. Liebhaber, J. Kübert, E. Bocquillon, Ch. Ames, H. Buhmann, T. M. Klapwijk, and L. W. Molenkamp, Phys. Rev. B 96, 165302 (2017).

  41. A. Kononov, V. A. Kostarev, B. R. Semyagin, V. V. Preobrazhenskii, M. A. Putyato, E. A. Emelyanov, and E. V. Deviatov, Phys. Rev. B 96, 245304 (2017).

  42. O. O. Shvetsov, V. A. Kostarev, A. Kononov, V. A. Golyashov, K. A. Kokh, O. E. Tereshchenko, and E. V. Deviatov, Eur. Phys. Lett. 119, 57009 (2017). https://doi.org/10.1209/0295-5075/119/57009

    Article  ADS  Google Scholar 

  43. W. J. Tomasch, Phys. Rev. Lett. 16, 16 (1966).

    Article  ADS  Google Scholar 

  44. W. L. McMillan and P. W. Anderson, Phys. Rev. Lett. 16, 85 (1966).

    Article  ADS  Google Scholar 

  45. J. M. Rowell and W. L. McMillan, Phys. Rev. Lett. 16, 453 (1966).

    Article  ADS  Google Scholar 

  46. J. M. Rowell, Phys. Rev. Lett. 30, 167 (1973).

    Article  ADS  Google Scholar 

  47. T. E. Kuzmicheva, S. A. Kuzmichev, A. V. Sadakov, A. V. Muratov, A. S. Usoltsev, V. P. Martovitsky, A. R. Shipilov, D. A. Chareev, E. S. Mitrofanova, and V. M. Pudalov, JETP Lett. 104, 858 (2016).

    Article  ADS  Google Scholar 

  48. T. E. Kuzmicheva, S. A. Kuzmichev, and N. D. Zhigadlo, JETP Lett. 112, 497 (2020).

    ADS  Google Scholar 

  49. M. T. Deng, S. Vaitiekénas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygárd, P. Krogstrup, and C. M. Marcus, Science (Washington, DC, U. S.) 354, 1557 (2016).

    Article  ADS  Google Scholar 

  50. P. Adroguer, C. Grenier, D. Carpentier, J. Cayssol, P. Degiovanni, and E. Orignac, Phys. Rev. B 82, 081303(R) (2010).

  51. Y. G. Naidyuky and I. K. Yanson, J. Phys.: Condens. Matter 10, 8905 (1998).

    ADS  Google Scholar 

  52. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science (Washington, DC, U. S.) 336, 1003 (2012).

    Article  ADS  Google Scholar 

  53. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nat. Phys. 8, 887 (2012).

    Article  Google Scholar 

  54. M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Lett. 12, 6414 (2012).

    Article  ADS  Google Scholar 

  55. W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup, J. Nygárd, and C. M. Marcus, Nat. Nanotechnol. 10, 232 (2015).

    Article  ADS  Google Scholar 

  56. S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygárd, P. Krogstrup, and C. M. Marcus, Nature (London, U.K.) 531, 206 (2016).

    Article  ADS  Google Scholar 

  57. J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, T. D. Stanescu, and S. M. Frolov, Sci. Adv. 3, e1701476 (2017).

  58. Ö. Gül, H. Zhang, F. K. de Vries, J. van Veen, K. Zuo, V. Mourik, S. Conesa-Boj, M. P. Novak, D. J. van Woerkom, M. Quinetro-Perez, M. C. Cassidy, A. Geresdi, S. Koelling, D. Car, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 17, 2690 (2017).

    Article  ADS  Google Scholar 

  59. H. Zhang, Ö. Gül, S. Conesa-Boj, et al., Nat. Commun. 8, 16025 (2017).

    Article  ADS  Google Scholar 

  60. Ö. Gül, H. Zhang, J. D. S. Bommer, M. W. A. de Moor, D. Car, S. R. Plissard, E. P. A. M. Bakkers, A. Geresdi, K. Watanabe, T. Taniguchi, and L. P. Kouwenhoven, Nat. Nanotechnol. 13, 192 (2018).

    Article  ADS  Google Scholar 

  61. A. Grivnin, E. Bor, M. Heiblum, Y. Oreg, and H. Shtrikman, Nat. Commun. 10, 1940 (2019).

    Article  ADS  Google Scholar 

  62. J. Chen, B. D. Woods, P. Yu, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, T. D. Stanescu, and S. M. Frolov, Phys. Rev. Lett. 123, 107703 (2019).

  63. M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012).

  64. M. Sato and S. Fujimoto, J. Phys. Soc. Jpn. 85, 072001 (2016).

  65. B. D. Woods, J. Chen, S. M. Frolov, and T. D. Stanescu, Phys. Rev. B 100, 125407 (2019).

  66. A. Vuik, B. Nijholt, A. R. Akhmerov, and M. Wimmer, SciPost Phys. 7, 061 (2019).

  67. Y. Wang, Sh. Yang, P. K. Sivakumar, B. R. Ortiz, S. M. L. Teicher, H. Wu, A. K. Srivastava, Ch. Garg, D. Liu, S. S. P. Parkin, E. S. Toberer, T. McQueen, S. D. Wilson, and M. N. Ali, arXiv: 2012.05898.

  68. C.-Zh. Li, A.-Q. Wang, Ch. Li, W.-Zh. Zheng, A. Brinkman, D.-P. Yu, and Zh.-M. Liao, Phys. Rev. Lett. 124, 156601 (2020).

  69. B. Xu, Zh. Fang, M.-Á. Sánchez-Martínez, J. W. F. Venderbos, Zh. Ni, T. Qiu, K. Manna, K. Wang, J. Paglione, Ch. Bernhard, C. Felser, E. J. Mele, A. G. Grushin, A. M. Rappe, and L. Wu, Proc. Natl. Acad. Sci. U. S. A. 117, 27104 (2020).

    Article  ADS  Google Scholar 

  70. G. Chang, S.-Y. Xu, B. J. Wieder, D. S. Sanchez, Sh.‑M. Huang, I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H. Lin, and M. Z. Hasan, Phys. Rev. Lett. 119, 206401 (2017).

  71. S.-Y. Xu, I. Belopolski, D. S. Sanchez, et al., Phys. Rev. Lett. 116, 096801 (2016).

  72. L. S. Levitov, Yu. V. Nazarov, and G. M. Eliashberg, JETP Lett. 41, 445 (1985).

    ADS  Google Scholar 

  73. L. S. Levitov, Yu. V. Nazarov, and G. M. Eliashberg, Sov. Phys. JETP 61, 133 (1985).

    Google Scholar 

  74. A. G. Aronov and Y. B. Lyanda-Geller, JETP Lett. 50, 431 (1989).

    ADS  Google Scholar 

  75. V. M. Edelstein, Solid State Commun. 73, 233 (1990).

    Article  ADS  Google Scholar 

  76. V. M. Edelstein, Phys. Rev. Lett. 75, 2004 (1995).

    Article  ADS  Google Scholar 

  77. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Phys. Rev. Lett. 93, 176601 (2004).

  78. V. M. Edelstein, Phys. Rev. B 72, 172501 (2005).

  79. C.-K. Lu and S. Yip, Phys. Rev. B 77, 054515 (2008).

  80. S. Yip, Ann. Rev. Condens. Matter Phys. 5, 15 (2014).

    Article  ADS  Google Scholar 

  81. K. Shen, G. Vignale, and R. Raimondi, Phys. Rev. Lett. 112, 096601 (2014).

  82. M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Rep. Prog. Phys. 80, 036501 (2017).

  83. W.-Y. He and K. T. Law, Phys. Rev. Res. 2, 012073 (2020).

Download references

ACKNOWLEDGMENTS

We are grateful to V.T. Dolgopolov for fruitful discussions and to S.S. Khasanov for X-ray sample characterization.

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 19-02-00203) and RF State task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Deviatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esin, V.D., Barash, Y.S., Timonina, A.V. et al. Coalescence of Andreev Bound States on the Surface of a Chiral Topological Semimetal. Jetp Lett. 113, 662–669 (2021). https://doi.org/10.1134/S0021364021100015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021100015

Navigation