Skip to main content
Log in

Charge prediction modeling with interpretation enhancement driven by double-layer criminal system

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

With the rapid development of artificial intelligence and the increasing demand for legal intelligence, using AI methods to predict legal judgments has become a hot spot in recent years. Charge prediction is one of the core tasks of Legal Judgment Prediction (LJP). It aims to predict charge from complicated legal facts, so as to help the court make judgments or provide legal professional guidance to non-professionals. In the field of legalAI, interpretability is crucial compared to others. Reasonable interpretability can eliminate hidden dangers such as gender discrimination and provide support for judges’ decisions. However, how to add the legal theory framework to the modeling to improve the interpretability is a challenge, which has few researches at present. To address this problem, we use Double-layer Criminal System as a guide to build Charge Prediction modeling called DCSCP which aims to predict charges in the criminal law of China. In general, our characteristic is to achieve multi-granularity inference of legal charges by obtaining the subjective and objective elements from the fact descriptions of legal cases. Specifically, our approach is performed in two steps: (1) extract the objective elements from the fact description and use them to generate candidate charges to achieve coarse-grained prediction; (2) extract the subjective elements from the fact description, and design the first-order predicate logic inference to realize the fine-grained charge inference in combination with the candidate charges. Experimental results show that our DCSCP can provide interpretable predictions, and it can maintain performance compared to other state-of-the-art charge prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://www.zuiming.net/

  2. https://wenshu.court.gov.cn

  3. https://github.com/Embedding/Chinese-Word-Vectors

  4. https://radimrehurek.com/gensim

References

  1. Baddeley, A.: Working memory. Science 255(5044), 556–559 (1992)

    Article  Google Scholar 

  2. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quantifying interpretability of deep visual representations. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6541–6549 (2017)

  3. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078 (2014)

  4. Clark, K., Luong, M. T., Le, Q. V., Manning, C. D.: Electra: Pre-training text encoders as discriminators rather than generators. arXiv:2003.10555(2020)

  5. Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., Hu, G.: Revisiting pre-trained models for chinese natural language processing. arXiv:2004.13922(2020)

  6. Devlin, J., Chang, M. W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

  7. Dong, Y., Su, H., Zhu, J., Zhang, B.: Improving interpretability of deep neural networks with semantic information. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4306–4314 (2017)

  8. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from twitter. Health Information Science and Systems 7(1), 1–7 (2019)

    Article  Google Scholar 

  9. Ghoshal, B., Tucker, A.: Estimating uncertainty and interpretability in deep learning for coronavirus (covid-19) detection. arXiv:2003.10769(2020)

  10. Grgic-Hlaca, N., Redmiles, E. M., Gummadi, K. P., Weller, A.: Human perceptions of fairness in algorithmic decision making: A case study of criminal risk prediction. In: Proceedings of the 2018 World Wide Web Conference, pp. 903–912 (2018)

  11. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)

    Article  Google Scholar 

  12. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from iot-based ecgs. World Wide Web 23(5), 2835–2850 (2020)

    Article  Google Scholar 

  13. Hendricks, L. A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: European Conference on Computer Vision, pp 3–19. Springer (2016)

  14. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv:1606.08415 (2016)

  15. Hirsch, H. J.: Die Lehre von den negativen Tatbestandsmerkmalen. Röhrscheid (1960)

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Hu, Z., Li, X., Tu, C., Liu, Z., Sun, M.: Few-shot charge prediction with discriminative legal attributes. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 487–498 (2018)

  18. Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22(6), 2545–2560 (2019)

    Article  Google Scholar 

  19. Jiang, X., Ye, H., Luo, Z., Chao, W., Ma, W.: Interpretable rationale augmented charge prediction system. In: Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pp. 146–151 (2018)

  20. Johnson, R., Zhang, T.: Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 562–570 (2017)

  21. Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)

  22. Kort, F.: Predicting supreme court decisions mathematically: A quantitative analysis of the “right to counsel” cases. Am. Polit. Sci. Rev. 51(1), 1–12 (1957)

    Article  Google Scholar 

  23. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966 (2015)

  24. Lauderdale, B. E., Clark, T. S.: The supreme court’s many median justices. Am. Political Sci. Rev. 106(4), 847–866 (2012)

    Article  Google Scholar 

  25. Li, H., Wang, Y., Wang, H., Zhou, B.: Multi-window based ensemble learning for classification of imbalanced streaming data. World Wide Web 20(6), 1507–1525 (2017)

    Article  Google Scholar 

  26. Li, J., Zhang, G., Yan, H., Yu, L., Meng, T.: A markov logic networks based method to predict judicial decisions of divorce cases. In: 2018 IEEE International Conference on Smart Cloud (SmartCloud), pp. 129–132. IEEE (2018)

  27. Liu, X., Mou, L., Cui, H., Lu, Z., Song, S.: Jumper: Learning when to make classification decision in reading. In: IJCAI (2018)

  28. Liu, Y.: Criticism on the flatness of criminal constitution system. Legal Research, 5 (2011)

  29. Long, S., Tu, C., Liu, Z., Sun, M.: Automatic judgment prediction via legal reading comprehension. In: China National Conference on Chinese Computational Linguistics, pp. 558–572. Springer (2019)

  30. Luo, B., Feng, Y., Xu, J., Zhang, X., Zhao, D.: Learning to predict charges for criminal cases with legal basis. arXiv:1707.09168 (2017)

  31. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

  32. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 1003–1011 (2009)

  33. Nagel, S. S.: Applying correlation analysis to case prediction. Tex. L. Rev., 1006 (1963)

  34. Nai, P., Li, L., Tao, X.: A densely connected encoder stack approach for multi-type legal machine reading comprehension. In: International Conference on Web Information Systems Engineering, pp. 167–181. Springer (2020)

  35. Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines (1998)

  36. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Information Science and Systems 8(1), 1–9 (2020)

    Article  Google Scholar 

  37. Segal, J. A.: Predicting supreme court cases probabilistically: The search and seizure cases, 1962-1981. Am. Political Sci. Rev. 78(4), 891–900 (1984)

    Article  Google Scholar 

  38. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

  39. Wei, D., Lin, L.: An external knowledge enhanced multi-label charge prediction approach with label number learning. arXiv:1907.02205 (2019)

  40. Wen-hao, C.: Promote of essential criminal law and value in double-layer criminal system. Journal of Henan Judicial Police Vocational College, 9 (2018)

  41. Whitehead, A. N., Russell, B.: 1913. principia mathematica. Cambridge 2, 1925–1927 (1910)

    Google Scholar 

  42. Xiao, C., Zhong, H., Guo, Z., Tu, C., Liu, Z., Sun, M., Feng, Y., Han, X., Hu, Z., Wang, H., et al.: Cail2018: A large-scale legal dataset for judgment prediction. arXiv:1807.02478 (2018)

  43. Xu, N., Wang, P., Chen, L., Pan, L., Wang, X., Zhao, J.: Distinguish confusing law articles for legal judgment prediction. arXiv:2004.02557 (2020)

  44. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)

  45. Ye, H., Jiang, X., Luo, Z., Chao, W.: Interpretable charge predictions for criminal cases: Learning to generate court views from fact descriptions. arXiv:1802.08504 (2018)

  46. Zhang, M.: Principles of Criminal Law. The Commercial Press (2017)

  47. Zhao, L., Li, L., Zheng, X.: A bert based sentiment analysis and key entity detection approach for online financial texts. arXiv:2001.05326(2020)

  48. Zhong, H., Guo, Z., Tu, C., Xiao, C., Liu, Z., Sun, M.: Legal judgment prediction via topological learning. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3540–3549 (2018)

  49. Zhong, H., Wang, Y., Tu, C., Zhang, T., Liu, Z., Sun, M.: Iteratively questioning and answering for interpretable legal judgment prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp 1250–1257 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering 2020 Guest Editors: Hua Wang, Zhisheng Huang, and Wouter Beek

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhao, L., Nai, P. et al. Charge prediction modeling with interpretation enhancement driven by double-layer criminal system. World Wide Web 25, 381–400 (2022). https://doi.org/10.1007/s11280-021-00873-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-021-00873-8

Keywords

Navigation