Skip to main content
Log in

First Band of Ruelle Resonances for Contact Anosov Flows in Dimension 3

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show, using semiclassical measures and unstable derivatives, that a smooth vector field X generating a contact Anosov flow on a 3-dimensional manifold \(\mathcal {M}\) has only finitely many Ruelle resonances in the vertical strips \(\{ s\in \mathbb {C}\ |\ \mathrm{Re}(s)\in [-\nu _{\min }+\varepsilon ,-\frac{1}{2}\nu _{\max }-\varepsilon ]\cup [-\frac{1}{2}\nu _{\min }+\varepsilon ,0]\}\) for all \(\varepsilon >0\), where \(0<\nu _{\min }\le \nu _{\max }\) are the minimal and maximal expansion rates of the flow (the first strip only makes sense if \(\nu _{\min }>\nu _{\max }/2\)). We also show polynomial bounds in s for the resolvent \((-X-s)^{-1}\) as \(|\mathrm{Im}(s)|\rightarrow \infty \) in Sobolev spaces, and obtain similar results for cases with a potential. This is a short proof of a particular case of the results by Faure–Tsujii, using that \(\dim E_u=\dim E_s=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For instance, this is satisfied for Anosov geodesic flows on orientable Riemannian surfaces.

  2. The limit exists by Fekete’s lemma, and the same hold as well for \(V_{\max },V_{\min }\) defined later.

  3. \(H^N(\mathcal {M})=(1+\Delta _g)^{-N/2}L^2(\mathcal {M})\) denotes the usual Sobolev space of order N on \(\mathcal {M}\).

  4. It can be checked, by inspecting the proof, that one can choose \(c_{X}=\nu _{\min }\) and \(c_V=V_{\max }\).

  5. And the fact that \(a \in S^m_{h, \rho , 0}\) and \(a > 0\) implies \(\sqrt{a} \in S^{m/2}_{h, \rho , 0}\).

References

  1. Butterley, O., Liverani, C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1(2), 301–322 (2007)

    Article  MathSciNet  Google Scholar 

  2. Dolgopyat, D.: On decay of correlations in Anosov flows. Ann. Math. 147, 357–390 (1998)

    Article  MathSciNet  Google Scholar 

  3. Dyatlov, S.: Resonance projectors and asymptotics for r-normally hyperbolic trapped sets. J. Am. Math. Soc. 28(2), 311–381 (2015)

    Article  MathSciNet  Google Scholar 

  4. Dyatlov, S.: Spectral gaps for normally hyperbolic trapping. Ann. Inst. Fourier (Grenoble) 66(1), 55–82 (2016)

    Article  MathSciNet  Google Scholar 

  5. Dyatlov, S., Faure, F., Guillarmou, C.: Power spectrum of the geodesic flow on hyperbolic manifolds. Anal. PDE 8(4), 923–1000 (2015)

    Article  MathSciNet  Google Scholar 

  6. Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances, AMS Graduate Studies in Mathematics 200

  7. Faure, F., Guillarmou, C.: Horocyclic invariance of Ruelle resonant states for contact Anosov flows in dimension 3. Math. Res. Lett. 25(5), 1405–1427 (2018)

    Article  MathSciNet  Google Scholar 

  8. Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008)

    Article  MathSciNet  Google Scholar 

  9. Faure, F., Sjöstrand, J.: Upper bound on the density of Ruelle resonances for Anosov flows. Commun. Math. Phys. 308(2), 325–364 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Faure, F., Tsujii, M.: Band structure of the Ruelle spectrum of contact Anosov flows. Comptes Rendus Mathématique 351, 385–391 (2013)

    Article  MathSciNet  Google Scholar 

  11. Faure, F., Tsujii, M.: Prequantum transfer operator for Anosov diffeomorphism, Astérisque 375, (2015), SMF

  12. Faure, F., Tsujii, M.: The semiclassical zeta function for geodesic flows on negatively curved manifolds. Invent. Math. 208, 851–998 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Faure, F., Tsujii, M.: Micro-local Analysis and Band Structure of Contact Anosov Flows. (2020). arXiv:2102.11196

  14. Grigis, A., Sjöstrand, J.: Microlocal Analysis for Differential Operators. An Introduction. London Mathematical Society Lecture Note Series, 196. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  15. Guillarmou, C., Hilgert, J., Weich, T.: Classical and quantum resonances for hyperbolic surfaces. Math. Ann. 370(3–4), 1231–1275 (2018)

    Article  MathSciNet  Google Scholar 

  16. Guillarmou, C., Küster, B.: Spectral theory of the frame flow on hyperbolic 3-manifolds (with an appendix by Charles Hadfield), Preprint arXiv:2005.08387

  17. Hurder, S., Katok, A.: Differentiability, rigidity and Godbillon–Vey classes for Anosov flows. Publ. IHES 72, 5–61 (1990)

    Article  MathSciNet  Google Scholar 

  18. Küster, B., Weich, T.: Quantum-classical correspondence on associated vector bundles over locally symmetric spaces. IMRN (2019) rnz068

  19. Liverani, C.: On contact Anosov flows. Ann. Math. 159(2), 1275–1312 (2004)

    Article  MathSciNet  Google Scholar 

  20. Nonnenmacher, S., Zworski, M.: Decay of correlations for normally hyperbolic trapping. Invent. Math. 200(2), 345–438 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Tsujii, M.: Quasi-compactness of transfer operators for contact anosov flows. Nonlinearity 23, 1495–1545 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. Tsujii, M.: Contact Anosov flows and the FBI transform. Ergod. Theory Dyn. Syst. 32, 2083–2118 (2012)

    Article  Google Scholar 

  23. Tsujii, M.: Exponential mixing for generic volume-preserving Anosov flows in dimension three. J. Math. Soc. Jpn. 70(2), 757–821 (2018)

    Article  MathSciNet  Google Scholar 

  24. Tsujii, M., Zhang, Z.: Smooth mixing Anosov flows in dimension three are exponential mixing, arXiv:2006.04293

  25. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, 138. American Mathematical Society, Providence, RI (2012)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 725967). We thank Semyon Dyatlov for several useful discussions and for suggesting to apply the method of [Dy2] in this setting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihajlo Cekić.

Additional information

Communicated by C. Liverani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: An Exotic Symbol Class

Appendix A: An Exotic Symbol Class

Let \(\mathcal {M}\) be a closed n-manifold equipped with a Riemannian metric g, let \(k\ge 0\) and \(0<\rho <1\). We use the usual notation \(\langle \xi \rangle =(1+|\xi |^2)^{1/2}\), \(h>0\) will be a small semiclassical parameter, we let \(\overline{T}^*\mathcal {M}\) be the fiber radial compactification of \(T^*\mathcal {M}\) as defined in [DyZw, Section E.1.3] and \(H_p\) will denote the Hamiltonian vector field of \(p\in C^\infty (T^*\mathcal {M})\). Given an operator P, we write \({{\,\mathrm{Im}\,}}P = \frac{P - P^*}{2i}\) for the imaginary part of P and \({{\,\mathrm{Re}\,}}P = \frac{P + P^*}{2}\) for the real part; then \(P = {{\,\mathrm{Re}\,}}P + i {{\,\mathrm{Im}\,}}P\). Recall that for \(x\in \mathbb {R}\) we write \(x_+ = \max (x, 0)\).

Most of the results we gather in this appendix are simple extensions of classical results in semiclassical analysis that can be found in the books [Zw] and [DyZw, Appendix E]. We shall only point out the main differences with our setting.

For each \(m\in \mathbb {R}\), we define the exotic pseudo-differential calculus \(\Psi _{h,\rho , k}^m(\mathcal {M})\) by saying that \(A\in \Psi _{h,\rho , k}^m(\mathcal {M})\) if its Schwartz kernel \(K_A\) is in \(\mathcal {O}_{C^N(\mathcal {M}\times \mathcal {M})}(h^N)\) for all \(N>0\) outside a neighborhood of the diagonal, and near the diagonal can be written in local coordinates as

$$\begin{aligned} K_A(x,y)=(2\pi h)^{-n}\int _{\mathbb {R}^n} e^{\frac{i}{h}(x-y)\xi }a(x,\xi )d\xi , \end{aligned}$$

where the local symbols are in the class \(S^{m}_{h,\rho ,k}(\mathbb {R}^{2n})\) defined by the property: \(a\in S^{m}_{h,\rho ,k}(\mathbb {R}^{2n})\) if \(a\in C^\infty (\mathbb {R}^{2n})\) is an h-dependent function and satisfies in local coordinates (for some \(C_{\alpha ,\beta }\) uniform in h)

$$\begin{aligned} |\partial _x^{\alpha }\partial _\xi ^{\beta }a(x,\xi )|\le C_{\alpha ,\beta }\langle \xi \rangle ^{m-|\beta |}h^{-\rho (|\alpha |-k)_+}. \end{aligned}$$
(A.1)

We notice that it is important here, for the calculus, that the loss of \(h^{-\rho }\) happens only in the x-derivatives and not in the \(\xi \) derivatives. First, observe the basic properties for \(0\le k'\le k\)

$$\begin{aligned}&a\in S^{m}_{h,\rho ,k}(\mathbb {R}^{2n}),\, b\in S^{m'}_{h,\rho ,k'}(\mathbb {R}^{2n}) \Longrightarrow ab\in S^{m+m'}_{h,\rho ,k'}(\mathbb {R}^{2n}),\nonumber \\&a\in S^{m}_{h,\rho ,k}(\mathbb {R}^{2n}) \Longrightarrow \partial ^\alpha _xa\in h^{-\rho (|\alpha |-k)_+}S^{m}_{h,\rho ,(k-|\alpha |)_+}(\mathbb {R}^{2n}) , \,\, \partial ^\alpha _\xi a\in S^{m-|\alpha |}_{h,\rho ,k}(\mathbb {R}^{2n}),\nonumber \\&\quad \quad \quad \forall j\in [0,k], \quad h^{j\rho }S^{m}_{h,\rho ,k-j}(\mathbb {R}^{2n})\subset S^{m}_{h,\rho ,k}(\mathbb {R}^{2n}). \end{aligned}$$
(A.2)

We define \(S^m_{h,\rho ,k}(T^*\mathcal {M})\) to be \(C^\infty (T^*\mathcal {M})\) functions that, using local coordinates on \(\mathcal {M}\), are in \(S^m_{h,\rho ,k}(\mathbb {R}^{2n})\). First, one directly sees from the formula of symbols under a change of coordinates [Zw, Theorem 9.9] that the symbol in local coordinates being in \(S^{m}_{h,\rho ,k}(\mathbb {R}^{2n})\) is invariant by change of coordinates, and moreover there is a principal symbol map

$$\begin{aligned} \sigma : \Psi _{h,\rho , k}^m(\mathcal {M})\rightarrow S^{m}_{h,\rho ,k}(T^*\mathcal {M})/hS^{m-1}_{h,\rho ,k}(T^*\mathcal {M}). \end{aligned}$$

Using local charts and a partition of unity, we fix a semi-classical quantization \(\mathrm{Op}_h:S^{m}_{h,\rho ,k}(T^*\mathcal {M})\rightarrow \Psi _{h,\rho ,k}^m(\mathcal {M})\), which satisfies

$$\begin{aligned} \sigma (\mathrm{Op}_h(a))=a \, \, \mathrm{mod}\, \, hS^{m-1}_{h,\rho ,k}(T^*\mathcal {M}). \end{aligned}$$

We first check that symbols in this class are closed under composition. Recall from [Zw, Theorem 4.14] that if \(A\in \Psi ^{m}_{h,\rho ,k}(\mathbb {R}^n)\) and \(B\in \Psi ^{m'}_{h,\rho ,k}(\mathbb {R}^n)\) have full symbol ab then AB has full symbol (as an oscillatory integral)

$$\begin{aligned} a \# b(x,\xi ) =(2\pi h)^{-n}\int _{\mathbb {R}^{2n}} e^{-\frac{i}{h}(x'.\xi ')}a(x,\xi +\xi ')b(x+x',\xi )dx'd\xi ' \end{aligned}$$
(A.3)

which has expansion

$$\begin{aligned} a \# b =\sum _{|\alpha |\le N} \frac{(-ih)^{|\alpha |}}{\alpha !} \partial _\xi ^\alpha a \partial _x^\alpha b +\mathcal {O}_{S_{h,\rho ,0}^{m+m'-N-1}(\mathbb {R}^{2n})}(h^{(N+1)(1-\rho )}). \end{aligned}$$
(A.4)

Here \(|\partial _\xi ^\alpha a \partial _x^\alpha b|\le C_{\alpha }h^{-|\alpha |\rho }\langle \xi \rangle ^{m+m'-|\alpha |}\) so that higher order terms in the expansion are higher powers of h and of \(\langle \xi \rangle ^{-1}\).

Lemma A .1

Let \(a \in S^{m_1}_{h, \rho , k}(\mathbb {R}^{2n})\) and \(b \in S^{m_2}_{h, \rho , k}(\mathbb {R}^{2n})\). Then \(a \# b \in S^{m_1 + m_2}_{h, \rho , k}(\mathbb {R}^{2n})\).

Proof

This follows from (A.4) and (A.2). \(\quad \square \)

For \(A\in \Psi _{h,\rho ,k}^{m}(\mathcal {M})\), we say that \((x_0,\xi _0)\in \overline{T}^*\mathcal {M}\) is not in \(\mathrm{WF}_h(A)\) if there is a small neighborhood U of \((x_0,\xi _0)\) in \(\overline{T}^*\mathcal {M}\) so that the full local symbol of A restricted to U is in \(h^{N}S^{-N}_{h,\rho ,0}(U)\) for all \(N>0\). We also define the elliptic set \(\mathrm{ell}_h(A)\) of \(A\in \Psi _{h,\rho ,k}^m(\mathcal {M})\) to be the set of points \((x_0,\xi _0)\in \overline{T}^*\mathcal {M}\) so that for a neighborhood U of \((x_0,\xi _0)\) there is \(c_0>0\) so that \(\langle \xi \rangle ^{-m}|\sigma (A)(x,\xi )|\ge c_0\), for \((x, \xi ) \in U\). We finally list some properties of the \(\Psi _{h, \rho , k}({{\,\mathrm{\mathcal {M}}\,}})\) calculus.

Proposition A.1

The following properties hold:

  1. 1.

    Let \(A \in \Psi _{h, \rho , k}^m(\mathcal {M})\). If \(B, B' \in \Psi _h^{{{\,\mathrm{comp}\,}}}(\mathcal {M})\) with \(\mathrm{WF}_h(B) \cap \mathrm{WF}_h(B') = \emptyset \), then \(BAB' \in h^\infty \Psi _h^{{{\,\mathrm{comp}\,}}}(\mathcal {M})\).

  2. 2.

    The principal symbol is well-defined as a map

    $$\begin{aligned} \sigma : \Psi ^m_{h, \rho , k}(T^*\mathcal {M}) \rightarrow S^m_{h, \rho , k}(T^*\mathcal {M}) / hS^{m-1}_{h, \rho , k}(T^*\mathcal {M}) \end{aligned}$$

    with kernel \(h\Psi _{h,\rho ,k}^{m-1}(\mathcal {M})\), and it satisfies for any \(A\in \Psi ^m_{h, \rho , k}(\mathcal {M})\) and \(B\in \Psi ^{m'}_{h, \rho , k}(\mathcal {M})\)

    $$\begin{aligned} \begin{aligned} \sigma (AB) = \sigma (A) \sigma (B) \,\,\,\mathrm {mod}\,\,\, h^{1-\rho }S^{m+m'-1}_{h,\rho ,k}(T^*\mathcal {M}), \\ \sigma (AB) = \sigma (A) \sigma (B) \,\,\,\mathrm {mod}\,\,\, hS^{m+m'-1}_{h,\rho ,k-1}(T^*\mathcal {M}) \text { if }k\ge 1. \end{aligned} \end{aligned}$$
  3. 3.

    If \(A \in \Psi ^{m_1}_{h, \rho , k}(\mathcal {M})\) and \(B \in \Psi ^{m_2}_{h, \rho , k}(\mathcal {M})\) for \(k\ge 1\), then

    $$\begin{aligned} \begin{aligned} \, [A, B]\in h^{1 - \rho } \Psi ^{m_1 + m_2 - 1}_{h, \rho , k}(\mathcal {M}), \\ h^{-1}[A, B] \in \Psi _{h, \rho , k - 1}^{m_1 + m_2 - 1}(\mathcal {M}) \text { if }k\ge 1 , \end{aligned} \end{aligned}$$

    and \(\sigma (h^{-1}[A, B]) = -i\{\sigma (A), \sigma (B)\}\).

  4. 4.

    If \(P = -ihX\) for X a vector field on \({{\,\mathrm{\mathcal {M}}\,}}\), \(\Theta \in \Psi ^m_{h, \rho , k}({{\,\mathrm{\mathcal {M}}\,}})\) and \(H_p \sigma (\Theta ) \in S^m_{h, \rho , k}({{\,\mathrm{\mathcal {M}}\,}})\), where \(p =\sigma (P)= \xi (X)\), then \([P, \Theta ] \in h\Psi ^m_{h, \rho , k}({{\,\mathrm{\mathcal {M}}\,}})\).

  5. 5.

    If \(A \in \Psi _{h, \rho , k}^m(\mathcal {M})\), then \(A^* \in \Psi _{h, \rho , k}^m(\mathcal {M})\) and

    $$\begin{aligned}\begin{aligned} \sigma (A^*)=\overline{\sigma (A)} \,\,\,\mathrm {mod}\,\,\, h^{1-\rho }S^{m+m'-1}_{h,\rho ,k}(T^*\mathcal {M}),\\ \sigma (A^*)=\overline{\sigma (A)} \,\,\,\mathrm {mod}\,\,\, hS^{m-1}_{h,\rho ,k-1}(T^*\mathcal {M}) \text { if }k\ge 1.\end{aligned}\end{aligned}$$
  6. 6.

    Each \(A \in \Psi ^0_{h, \rho , 0}(\mathcal {M})\) is bounded and for each \(\varepsilon > 0\)

    $$\begin{aligned}\Vert A\Vert _{L^2 \rightarrow L^2} \le (1 + \varepsilon ) \sup _{h, x, \xi } |\sigma _h(A)(x, \xi )| + \mathcal {O}_{\varepsilon }(h^{\infty }).\end{aligned}$$

    Moreover, for any \(A \in \Psi _{h, \rho , k}^m(\mathcal {M})\) and any \(s \in \mathbb {R}\) we have

    $$\begin{aligned}\Vert A\Vert _{H_h^s \rightarrow H_h^{s-m}} \le (1 + \varepsilon ) \sup _{h, x, \xi }|\langle {\xi }\rangle ^{-m} \sigma (A)| + \mathcal {O}_{\varepsilon }(h^\infty ).\end{aligned}$$
  7. 7.

    Let \(P \in \Psi _{h, \rho , k}^p({{\,\mathrm{\mathcal {M}}\,}})\), \(A \in \Psi ^m_{h, \rho , k}({{\,\mathrm{\mathcal {M}}\,}})\) and \(B_1 \in \Psi ^l_{h, \rho , k}({{\,\mathrm{\mathcal {M}}\,}})\). Assume \(\mathrm{WF}_h(A) \subset {{\,\mathrm{ell}\,}}_h(P) \cap {{\,\mathrm{ell}\,}}_h(B_1)\). Then for all \(s\in \mathbb {R}\), \(N > 0\), and u with \(B_1Pu \in H^{s-p-l}_h({{\,\mathrm{\mathcal {M}}\,}})\)

    $$\begin{aligned}\Vert Au\Vert _{H^{s-m}_h} \le C\Vert B_1Pu\Vert _{H^{s - p - l}_h} + \mathcal {O}(h^\infty ) \Vert u\Vert _{H_h^{-N}}.\end{aligned}$$
  8. 8.

    Assume \(k {\ge } 1\) and let \(P \in \Psi _{h, \rho , k}^1({{\,\mathrm{\mathcal {M}}\,}})\) with \({{\,\mathrm{Re}\,}}P \in \Psi ^1_h({{\,\mathrm{\mathcal {M}}\,}})\) and \({{\,\mathrm{Im}\,}}P \in h\Psi ^0_{h, \rho , k}({{\,\mathrm{\mathcal {M}}\,}})\). Denote \(p := \sigma (P)\) and assume that for each \((x,\xi )\in \mathrm{WF}_h(A)\subset \overline{T}^*\mathcal {M}\), there is \(T>0\) such that \(e^{-TH_p}(x,\xi )\in \mathrm{ell}_h(B)\) and \(e^{-tH_p}(x,\xi )\in \mathrm{ell}_h(B_1)\) for \(t \in [0, T]\). Then for each \(u\in L^2\) with \(Pu \in L^2({{\,\mathrm{\mathcal {M}}\,}})\), and every \(N > 0\) there is a \(C > 0\) such that

    $$\begin{aligned}\Vert Au\Vert _{L^2} \le C\Vert Bu\Vert _{L^2} + Ch^{-1} \Vert B_1 P u\Vert _{L^2} + Ch^N \Vert u\Vert _{H_h^{-N}}.\end{aligned}$$

Proof

  1. 1.

    This follows from the composition formula (A.4).

  2. 2.

    This was discussed above.

  3. 3.

    From the composition formula (A.4), locally we have

    $$\begin{aligned} a\# b-b\# a \sim h(D_\xi a \partial _x b {-} D_\xi b \partial _x a) + \frac{1}{2}h^2(D_\xi ^2 a \partial _x^2 b - D_\xi ^2 b \partial _x^2 a) + \frac{1}{6}h^2(D_\xi ^3 a \partial _x^3 b - D_\xi ^3 b \partial _x^3 a) {+} \cdots \end{aligned}$$

    where, after taking the expansion to a high enough order, the remainder is in \(h^NS^{m-N}_{h,\rho ,0} (\mathbb {R}^{2n})\) for some large \(N>0\). By (A.2), all these terms are in \(h^{1-\rho }S^{m_1+m_2-1}_{h,\rho ,k}(\mathbb {R}^{2n})\cap hS^{m_1+m_2-1}_{h,\rho ,k-1}(\mathbb {R}^{2n})\) if \(k\ge 1\), and the principal symbol of \(h^{-1}[A,B]\) is \(-i(\partial _\xi a \partial _x b-\partial _x a \partial _\xi b)\).

  4. 4.

    This follows from the composition formula (A.4), the fact that \(\partial _\xi ^{\alpha } \sigma (P) = 0\) for \(|\alpha | \ge 2\) and Item 3 above.

  5. 5.

    This follows from the fact that, if A has full local symbol a in local coordinates, the full symbol \(a^*\) of \(A^*\) is

    $$\begin{aligned} a^*(x, \xi ) \sim \sum _\alpha \frac{h^{|\alpha |}}{\alpha !} \partial _\xi ^\alpha D_x^\alpha \overline{a(x, \xi )}. \end{aligned}$$
  6. 6.

    The argument is standard (see [GrSj, Theorem 4.5]) and we just make a brief summary. Let \(a := \sigma (A) \in S^0_{h, \rho , k}(\mathcal {M})\). For \(M=\Vert a\Vert _\infty \), we can construct \(B_0 \in \Psi ^0_{h, \rho , 0}(\mathcal {M})\) with principal symbol \(b_0:=\sqrt{(1 + \varepsilon )^2M^2-|a|^2}\ge \varepsilon M>0\), so that

    $$\begin{aligned} C:=(1 + \varepsilon )^2 M^2 - A^*A = B_0^*B_0 + h^{1-\rho }R_0, \end{aligned}$$

    for some \(R_0=R_0^* \in \Psi _{h, \rho , 0}^{-1}(\mathcal {M})\) by part 2.Footnote 5 Next we can choose \(B_1=B_0 + \tfrac{h^{1-\rho }}{2}\mathrm {Op}_h(b_0^{-1})^*R_0\) so that \(B_1^*B_1=C - h^{2(1-\rho )}R_1\) with \(R_1\in \Psi ^{-2}_{h, \rho , 0}(\mathcal {M})\). We iterate this procedure to find \(B_N \in \Psi _{h, \rho , 0}^{0}(\mathcal {M})\) such that \((1 + \varepsilon )^2 M^2 - A^*A=B_N^*B_N+h^{(N+1) (1-\rho )}R_N\) with \(R_N\in \Psi _{h,\rho ,0}^{-N-1}(\mathcal {M})\). It is a routine argument to show that \(\Vert R_N\Vert _{L^2\rightarrow L^2}=\mathcal {O}(h^{N(1-\rho ) - n})\) thus for any \(u \in L^2\)

    $$\begin{aligned} \Vert Au\Vert _{L^2}^2 = (1 + \varepsilon )^2 M^2\Vert u\Vert _{L^2}^2 - \Vert B_Nu\Vert _{L^2}^2 + \mathcal {O}(h^{2(N + 1)(1-\rho )-n}) \Vert u\Vert ^2_{L^2} \end{aligned}$$

    which shows the desired estimate by choosing N large. The Sobolev bound is an easy consequence of this.

  7. 7.

    This follows from the parametrix construction in the elliptic set, the main thing to notice is that if \(B \in \Psi _{h, \rho , k}^m(\mathcal {M})\), \(A \in \Psi _{h, \rho , k}^{l}(\mathcal {M})\) and \(\mathrm{WF}_h(A) \subset {{\,\mathrm{ell}\,}}_h(B)\), then

    $$\begin{aligned} \frac{\sigma (A)}{\sigma (B)} \in S_{h, \rho , k}^{l-m}(\mathcal {M}). \end{aligned}$$
  8. 8.

    We follow the proof of [DyZw, Theorem E.47] and divide the proof into steps.

    Step 0: an escape function. Fix \(\beta \ge 0\). There is a \(g \in C^\infty ({\overline{T}}^*\mathcal {M})\) with \({{\,\mathrm{supp}\,}}g \subset {{\,\mathrm{ell}\,}}_h(B_1)\), such that

    $$\begin{aligned} g \ge 0, \quad g > 0 \,\,\mathrm {on}\,\, \mathrm{WF}_h(A), \quad H_p g \le - \beta g, \end{aligned}$$

    where the last condition holds outside \({{\,\mathrm{ell}\,}}_h(B)\). Step 1. Note that \(g \in S^0(T^*{{\,\mathrm{\mathcal {M}}\,}})\) and define

    $$\begin{aligned} G:= {{\,\mathrm{Op}\,}}_h(\langle {\xi }\rangle ^s g) \in \Psi _h^s({{\,\mathrm{\mathcal {M}}\,}}), \quad \mathrm{WF}_h(G) \subset {{\,\mathrm{ell}\,}}_h(B_1). \end{aligned}$$

    We can that \(u \in C^\infty ({{\,\mathrm{\mathcal {M}}\,}})\). If we write \(f = Pu\),

    $$\begin{aligned} {{\,\mathrm{Im}\,}}\langle {f, G^*Gu}\rangle = \underbrace{{{\,\mathrm{Im}\,}}\langle {({{\,\mathrm{Re}\,}}P) u, G^*Gu}\rangle }_{\mathrm {term\,\, T_1}} + \underbrace{{{\,\mathrm{Re}\,}}\langle {({{\,\mathrm{Im}\,}}P) u, G^*Gu}\rangle }_{\mathrm {term\,\, T_2}}. \end{aligned}$$

    We will bound the two terms on the right separately.

    Step 2: term \(T_1\). Since \(\mathrm{Re}(P)\in \Psi _h^1(\mathcal {M})\) is non exotic, this step is exactly the same as in the proof of [DyZw, Theorem E.47] and we get

    $$\begin{aligned} T_1 \le (C_1 - \beta )h \Vert Gu\Vert _{L^2}^2 + Ch\Vert Bu\Vert ^2_{H_h^s} + Ch^2 \Vert B_1 u\Vert ^2_{H^{s-\frac{1}{2}}_h} + \mathcal {O}(h^\infty )\Vert u\Vert _{H_h^{-N}}^2. \end{aligned}$$

    Step 3: term \(T_2\). Write

    $$\begin{aligned} T_2 = {{\,\mathrm{Re}\,}}\langle {({{\,\mathrm{Im}\,}}P) u, G^*Gu}\rangle = \langle {({{\,\mathrm{Im}\,}}P)Gu, Gu}\rangle + {{\,\mathrm{Re}\,}}\langle {[G, {{\,\mathrm{Im}\,}}P]u, Gu}\rangle . \end{aligned}$$

    We estimate the two terms on the right hand side separately. Firstly

    $$\begin{aligned} |\langle {({{\,\mathrm{Im}\,}}P)Gu, Gu}\rangle | = h |\langle {(h^{-1}{{\,\mathrm{Im}\,}}P)}Gu, Gu\rangle | \le C_2 h \Vert Gu\Vert _{L^2}^2 + \mathcal {O}(h^\infty ) \Vert u\Vert _{H_h^{-N}}^2, \end{aligned}$$

    where we used the boundedness property (item 6) for the exotic operator \(h^{-1} {{\,\mathrm{Im}\,}}P\). For the second term, we need to deal with a commutator. Note first that

    $$\begin{aligned} {{\,\mathrm{Re}\,}}G^*[G, {{\,\mathrm{Im}\,}}P] = h {{\,\mathrm{Re}\,}}G^* [G, h^{-1} {{\,\mathrm{Im}\,}}P] \in h^2 \Psi ^{2s-1}_{h, \rho , k-1}({{\,\mathrm{\mathcal {M}}\,}}), \end{aligned}$$

    by item 3. above. As \(\mathrm{WF}_h(G^*[G, {{\,\mathrm{Im}\,}}P]) \subset {{\,\mathrm{ell}\,}}_h(B_1)\), by the elliptic estimate

    $$\begin{aligned} |\langle {{{\,\mathrm{Re}\,}}(G^*[G, {{\,\mathrm{Im}\,}}P]) u, u}\rangle |&= h^2|\langle {h^{-2}{{\,\mathrm{Re}\,}}(G^*[G, {{\,\mathrm{Im}\,}}P]) u, Yu}\rangle | + \mathcal {O}(h^\infty )\Vert u\Vert _{H_h^{-N}}^2\\&\le Ch^2 \Vert B_1 u\Vert ^2_{H_h^{s - \frac{1}{2}}} + \mathcal {O}(h^\infty ) \Vert u\Vert _{H_h^{-N}}^2, \end{aligned}$$

    where \(Y \in \Psi _h^0({{\,\mathrm{\mathcal {M}}\,}})\) is such that \(Y = 1 + \mathcal {O}(h^\infty )\) microlocally on \(\mathrm{WF}_h({{\,\mathrm{Re}\,}}(G^*[G, {{\,\mathrm{Im}\,}}P]))\) and \(\mathrm{WF}_h(Y) \subset {{\,\mathrm{ell}\,}}_h(B_1)\). Here we used the boundedness in the exotic class item 6., item 1., the elliptic estimate in the exotic class (item 7.). Adding the two estimates we finally obtain

    $$\begin{aligned} |{{\,\mathrm{Re}\,}}\langle {({{\,\mathrm{Im}\,}}P)u, G^*Gu}\rangle | \le C_2h \Vert Gu\Vert _{L^2}^2 + Ch^2\Vert B_1 u\Vert _{H_h^{s - \frac{1}{2}}}^2 + \mathcal {O}(h^\infty ) \Vert u\Vert _{H_h^{-N}}^2. \end{aligned}$$

    Step 4. Adding the estimates in Steps 3. and 4., we obtain

    $$\begin{aligned} {{\,\mathrm{Im}\,}}\langle {f, G^*Gu}\rangle \le (C_1 + C_2 - \beta )h \Vert Gu\Vert _{L^2}^2 + Ch\Vert Bu\Vert _{H_h^s}^2 + Ch^2 \Vert B_1u\Vert _{H_h^{s - \frac{1}{2}}}^2 + \mathcal {O}(h^\infty ) \Vert u\Vert ^2_{H_h^{-N}}. \end{aligned}$$

    By ellipticity of B on \(\mathrm{WF}_h(G)\), there is \(Q \in \Psi _h^{s}({{\,\mathrm{\mathcal {M}}\,}})\) such that \(G = QB_1 + R\), where \(R \in h^\infty \Psi _h^{-\infty }({{\,\mathrm{\mathcal {M}}\,}})\), thus

    $$\begin{aligned} |\langle {f, G^*Gu}\rangle | \le |\langle {QB_1f, Gu}\rangle | + |\langle {Rf, Gu}\rangle | \le C\Vert B_1f\Vert _{H_h^s} \Vert Gu\Vert _{L^2} + \mathcal {O}(h^\infty ) \Vert u\Vert ^2_{H_h^{-N}}. \end{aligned}$$

    Now choose \(\beta = C_1 + C_2 + 1\) to get

    $$\begin{aligned} \Vert Gu\Vert _{L^2}^2 \le C\Vert Bu\Vert ^2_{H_h^s} + Ch^{-1} \Vert B_1f\Vert _{H_h^s} \Vert Gu\Vert _{L^2} + Ch\Vert B_1u\Vert ^2_{H_h^{s-\frac{1}{2}}} + \mathcal {O}(h^\infty )\Vert u\Vert _{H_h^{-N}}^2. \end{aligned}$$

    We can absorb the \(\Vert Gu\Vert _{L^2}\) term to the left hand side, at the cost of the additional term \(Ch^{-2} \Vert B_1f\Vert _{H_h^s}^2\) on the right hand side. Next, use the condition \(\mathrm{WF}_h(A) \subset {{\,\mathrm{ell}\,}}_h(G)\) and elliptic estimates to derive

    $$\begin{aligned} \Vert Au\Vert _{H^s_h} \le C \Vert Bu\Vert _{H_h^s} + Ch^{-1} \Vert B_1f\Vert _{H_h^s} + Ch^{\frac{1}{2}} \Vert B_1 u\Vert _{H_h^{s - \frac{1}{2}}} + \mathcal {O}(h^\infty ) \Vert u\Vert _{H_h^{-N}}.\nonumber \\ \end{aligned}$$
    (A.5)

    Step 5. Here, one can use the same induction procedure as in [DyZw, Proof of Th. E.47] to show that for each \(\ell \in \mathbb {N}\)

    $$\begin{aligned} \Vert Au\Vert _{H^s_h} \le C \Vert Bu\Vert _{H_h^s} + Ch^{-1} \Vert B_1f\Vert _{H_h^s} + Ch^{\frac{\ell }{2}} \Vert B_1 u\Vert _{H_h^{s - \frac{\ell }{2}}} + \mathcal {O}(h^\infty ) \Vert u\Vert _{H_h^{-N}}, \end{aligned}$$

    where the first step of the induction is exactly where we arrived in (A.5).   \(\square \)

Next we discuss semiclassical defect measures in the setting of the exotic calculus.

Proposition A.2

Assume that \(u_h\in L^2({{\,\mathrm{\mathcal {M}}\,}})\) is a family satisfying \(\Vert u_h\Vert _{L^2} = \mathcal {O}(1)\). Then there exists a Radon measure \(\mu \), called semiclassical measure, and a sequence \(h_j \rightarrow 0\), such that for any \(A \in \Psi ^{{{\,\mathrm{comp}\,}}}_{h, \rho , 0}({{\,\mathrm{\mathcal {M}}\,}})\) with \(\lim _{h\rightarrow 0} \sigma (A)(h;x,\xi ) = a_0(x,\xi )\) in \(C_c^0(T^*{{\,\mathrm{\mathcal {M}}\,}})\),

$$\begin{aligned} \lim _{j\rightarrow \infty }\langle {Au_{h_j}, u_{h_j}}\rangle _{L^2} = \int _{T^*{{\,\mathrm{\mathcal {M}}\,}}} a_0\, d\mu . \end{aligned}$$

Proof

We follow the proof of [DyZw, Theorem E.42]. By Proposition A.1, we have that \(A-\mathrm{Op}_h(a_h)\in h\Psi ^{\mathrm{comp}}_{h,\rho ,0}(\mathcal {M})\) for some symbol \(a_h\in S_{h,\rho ,0}^{\mathrm{comp}}(T^*\mathcal {M})\) so that \(a_{h}\rightarrow a_0\) in \(C_c^0(T^*{{\,\mathrm{\mathcal {M}}\,}})\); it suffices to prove the claim for \(A = {{\,\mathrm {Op}\,}}_{h_j}(a_{h_j})\). We write \(I_h(a_h) := \langle {\mathrm{Op}(a_h) u_h, u_h}\rangle _{L^2}\) and claim

$$\begin{aligned} \limsup _{h \rightarrow 0} |I_h(a_h)| \le C \limsup _{h \rightarrow 0} \Vert a_h\Vert _\infty \le C\sup _{h} \Vert a_h\Vert _\infty . \end{aligned}$$
(A.6)

Indeed, by Cauchy-Schwarz and Proposition A.1 (item 6), we have

$$\begin{aligned} |I_h(a_h)| \le C \Vert a_h\Vert _{\infty } + \mathcal {O}_{A}(h^{\infty }), \end{aligned}$$
(A.7)

where \(C = C(\Vert u_h\Vert _{L^2}) > 0\). Take a countable, dense subset \((a_h^{\ell })_{\ell \in \mathbb {N}} \subset S^{{{\,\mathrm{comp}\,}}}_{h, \rho , 0}(T^*\mathcal {M})\), where \(S^{{{\,\mathrm{comp}\,}}}_{h, \rho , 0}(T^*\mathcal {M})\) is equipped with the inductive limit topology from the seminorms in (A.1). By a diagonal argument and since by (A.7) \(I_h(a_h^\ell )\) is bounded for all \(\ell \), we may extract a sequence \(h_j \rightarrow 0\) such that \(I_{h_j}(a_{h_j}^\ell )\) converges for all \(\ell \). For each \(a_h \in S^{{{\,\mathrm{comp}\,}}}_{h, \rho , 0}(T^*\mathcal {M})\) and \(\ell \), we get by (A.7)

$$\begin{aligned} \limsup _{j, j' \rightarrow \infty } |I_{h_j}(a_{h_j}) - I_{h_{j'}}(a_{h_{j'}})| \le \limsup _{j, j' \rightarrow \infty } |I_{h_j}(a_{h_j}^\ell ) - I_{h_{j'}}(a_{h_{j'}}^\ell )| + C\sup _{h} \Vert a_h - a_{h}^\ell \Vert _{\infty }. \end{aligned}$$

Using the density of \(a^\ell _h\), we obtain that \(I_{h_j}(a_{h_j})\) is a Cauchy sequence and we may define for \(a_h\in S^{{{\,\mathrm{comp}\,}}}_{h, \rho , 0}(T^*\mathcal {M})\)

$$\begin{aligned} I(a_h) := \lim _{j \rightarrow \infty } I_{h_j}(a_{h_j}). \end{aligned}$$

By (A.7), the map I satisfies for each \(a_h\in S^{\mathrm{comp}}_{h,\rho ,0}(T^*\mathcal {M})\)

$$\begin{aligned} |I(a_h)| \le C \limsup _{j \rightarrow \infty } \Vert a_{h_j}\Vert _{\infty } \le C \sup _{h \in (0, h_0')} \Vert a_h\Vert , \end{aligned}$$
(A.8)

for any \(h_0' > 0\). In particular, I restricts to a continuous linear functional on \(C_c^0(T^*\mathcal {M})\), i.e. on h-independent functions. Given \(a_h \in S^{\mathrm{comp}}_{h,\rho ,0}(T^*\mathcal {M})\) with \(\lim _{h\rightarrow 0} a_{h}=a_0 \in C_c^\infty (T^*{{\,\mathrm{\mathcal {M}}\,}})\) in the \(C_c^0(T^*\mathcal {M})\) topology, we get by (A.8)

$$\begin{aligned} |I(a_0 - a_h)| \le C\sup _{h \in (0, h_0')} \Vert a_0 - a_h\Vert _{\infty } \rightarrow 0 \text { as }h_0'\rightarrow 0, \end{aligned}$$

and thus \(I(a_h)=I(a_0)\). By [DyZw, Theorem E.42] there is a Radon measure \(\mu \) such that for each \(a_0 \in C_c^\infty (T^*\mathcal {M})\)

$$\begin{aligned} I(a_0) = \lim _{j\rightarrow \infty }\langle {{{\,\mathrm{Op}\,}}_{h_j}(a_0) u_{h_j}, u_{h_j}}\rangle _{L^2}= \int _{T^*\mathcal {M}} a_0\, d\mu . \end{aligned}$$

The main claim follows from this, by using \(I(a_h) = I(a_0)\) under the given assumptions. \(\square \)

Now we prove a version of a propagation estimate for the semiclassical measure in the exotic calculus. This is a slight extension of [DyZw, Theorem E.44]. Note that if \(\sigma (P)\) is real valued and \(k\ge 1\), then \({{\,\mathrm{Im}\,}}P \in h\Psi _{h, \rho , k-1}^{m-1}(\mathcal {M})\) if \(P \in \Psi _{h, \rho , k}^m(\mathcal {M})\) by Proposition A.1 (item 5).

Proposition A.3

Assume \(\Vert u_h\Vert _{L^2} = \mathcal {O}(1)\) and \(u_h\) converges to a semiclassical measure \(\mu \). Let \(P \in \Psi ^m_{h, \rho , k}({{\,\mathrm{\mathcal {M}}\,}})\) with \(k\ge 1\), denote \(p:= \sigma (P)\) and assume that p is real-valued for all h, and define \(b := \sigma (h^{-1}{{\,\mathrm{Im}\,}}P)\). Assume that for each \(a \in C_c^\infty (T^*{{\,\mathrm{\mathcal {M}}\,}})\),

$$\begin{aligned} (H_p a)_0 = \lim _{h \rightarrow 0} H_p a \text { and } b_0 = \lim _{h \rightarrow 0} b \text { exist in } C^0(T^*\mathcal {M}). \end{aligned}$$

Then there is \(C>0\) such that for all \(a \in C_c^\infty (T^*{{\,\mathrm{\mathcal {M}}\,}})\) and \(Y \in \Psi _h^{{{\,\mathrm{comp}\,}}}({{\,\mathrm{\mathcal {M}}\,}})\) with \(Y = 1 + \mathcal {O}(h^\infty )\) microlocally on \({{\,\mathrm{supp}\,}}(a)\),

$$\begin{aligned} \Big |\int _{T^*{{\,\mathrm{\mathcal {M}}\,}}} ((H_{p}a)_0 + 2b_0a) d\mu \Big | \le C \Vert a\Vert _\infty \limsup _{h \rightarrow 0} (h^{ - 1} \Vert YPu_h\Vert _{L^2} \Vert Yu_h\Vert _{L^2}). \end{aligned}$$

Proof

Assume without loss of generality that a is real valued. Let \(A \in \Psi _h^{{{\,\mathrm{comp}\,}}}(M)\) be such that \(\sigma (A) = a\) and \(A^* = A\). We compute

$$\begin{aligned} h^{-1} {{\,\mathrm{Im}\,}}\langle {Pu_h, Au_h}\rangle&= (2i)^{-1}h^{- 1}\langle {Pu_h, Au_h}\rangle - (2i)^{-1} h^{- 1}\langle {P^*Au_h, u_h}\rangle \\&=(2i)^{-1} \langle {h^{ - 1}[A, P]u_h, u_h}\rangle + \langle {(h^{-1}{{\,\mathrm{Im}\,}}P) Au_h, u_h}\rangle . \end{aligned}$$

Now by Proposition A.1 (item 3), we have \(h^{-1}[A, P] \in \Psi ^{{{\,\mathrm{comp}\,}}}_{h, \rho , k-1}({{\,\mathrm{\mathcal {M}}\,}})\) with \(-i\sigma (h^{- 1}[A, P]) = H_p a\) and by assumptions \(\sigma ((h^{-1}{{\,\mathrm{Im}\,}}P) A) = ba\). Thus by Proposition A.2 the right hand side converges to, after possibly extracting a subsequence \(h_j \rightarrow 0\)

$$\begin{aligned} \int _{T^*{{\,\mathrm{\mathcal {M}}\,}}} \Big (\frac{1}{2}(H_{p}a)_0 + b_0a\Big ) d\mu . \end{aligned}$$

Moreover, the left hand side equals

$$\begin{aligned} (2ih)^{-1}(\langle {PYu_h, AYu_h}\rangle - \langle {AYu_h, PYu_h}\rangle ) + \mathcal {O}(h^\infty ), \end{aligned}$$

from which we easily deduce the main estimate. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cekić, M., Guillarmou, C. First Band of Ruelle Resonances for Contact Anosov Flows in Dimension 3. Commun. Math. Phys. 386, 1289–1318 (2021). https://doi.org/10.1007/s00220-021-04090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04090-2

Navigation