Skip to main content

Advertisement

Log in

Childhood lead exposure of Amerindian communities in French Guiana: an isotopic approach to tracing sources

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In French Guiana were detected high lead (Pb) levels in blood of Amerindian people. Lead exposure is a serious hazard that can affect the cognitive and behavior development. People can be exposed to Pb through occupational and environmental sources. Fingerprinting based on stable Pb isotopes in environmental media is often used to trace natural and anthropogenic sources but is rarely paired with blood data. The objective of this study was to determine the main factors associated with high Blood Lead Levels (BLL). Soil, manioc tubers, food bowls, beverages, wild games, lead pellets and children blood were sampled in small villages along the Oyapock River. children BLL ranged between 5.7 and 35 µg dL−1, all exceeding 5 µg dL−1, the reference value proposed in epidemiologic studies for lead poisoning. Among the different dietary sources, manioc tubers and large game contained elevated Pb concentrations while manioc-based dishes were diluted. The isotopes ratios (207Pb/206Pb and 208Pb/206Pb) of children blood overlapped these of lead shots and meals. These first results confirm for the first time, the diary consumption of manioc-based food as the main contributor to Amerindian children’s BLL in French Guiana, but don’t exclude the occasional exposure to lead bullets by hunting activities. This is a specific health concern, since previous studies have shown that these same villagers present high levels of mercury (Hg). These communities are indeed subject to a double exposure to neurotoxic metals, Hg and Pb, both through their diet. The farming activity is based on manioc growing, and explaining that this ancestral practice can induce serious health risks for the child’s development may seriously affect their food balance and cultural cohesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Source: Société Diffusion Distribution Service Conseil (DDSC) & Agence Régionale de Santé (ARS-Guyane)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  CAS  Google Scholar 

  • Andrieu A., Brousse P., Zeghnoun A., Verrier A., Saoudi A., Martin E., Clouzeau J., Jolivet A., Pecheux M., Rousseau C., 2020. Blood lead level in children 1 – 6 years old, in French Guiana, 2015–2016 - Imprégnation par le plomb des enfants de 1 à 6 ans en Guyane, 2015–2016. Bulletin Épidémiologique Hebdomadaire (BEH), Santé Publique France.

  • Akers, D. B., Buerck, A., MacCarthy, M. F., Cunningham, J. A., & Mihelcic, J. R. (2019). Estimates of Blood Lead Levels (BLLs) for Children in Coastal Madagascar: Accounting for Dietary Uptake of Lead (Pb). Expo Health. https://doi.org/10.1007/s12403-019-00316-w

    Article  Google Scholar 

  • Barbosa, F., Filion, M., Lemire, M., Sousa Passos, C. J., Lisboa, R. J., Philibert, A., Guimarães, J. R., & Mergler, D. (2009). Elevated blood levels in a riverside population in the Brazilian Amazon. Environmental Research, 109, 594–599

    Article  CAS  Google Scholar 

  • Barraza, F., Maurice, L., Uzu, G., Becerra, S., López, F., Ochoa-Herrera, V., Ruales, J., & Schreck, E. (2018). Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities. Science of The Total Environment, 622–623, 106–120. https://doi.org/10.1016/j.scitotenv.2017.11.246

    Article  CAS  Google Scholar 

  • Benefice, E., Luna Monrroy, S. J., & Lopez Rodriguez, R. W. (2008). A nutritional dilemma: Fish consumption, mercury exposure and growth of children in Amazonian Bolivia. International Journal of Environmental Health Research, 18(6), 415–427. https://doi.org/10.1080/09603120802272235.

    Article  CAS  Google Scholar 

  • Bi, C., Zhou, Y., Chen, Z., Jia, J., & Bao, X. (2018). Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Science of The Total Environment, 619–620, 1349–1357. https://doi.org/10.1016/j.scitotenv.2017.11.177.

    Article  CAS  Google Scholar 

  • Bi, X., Li, Z., Sun, G., Liu, J., & Han, Z. (2015). In vitro bioaccessibility of lead in surface dust and implications for human exposure: A comparative study between industrial area and urban district. Journal of Hazardous Materials, 297, 191–197. https://doi.org/10.1016/j.jhazmat.2015.04.074

    Article  CAS  Google Scholar 

  • Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., et al. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128. https://doi.org/10.1016/j.jhazmat.2014.03.017.

    Article  CAS  Google Scholar 

  • Carneiro, M. F. H., de B. Evangelista, F. S., & Barbosa, F. (2013). Manioc flour consumption as a risk factor for lead poisoning in the Brazilian Amazon. Journal of Toxicology and Environmental Health, Part A, 76, 206–216. https://doi.org/10.1080/15287394.2013.752326.

    Article  CAS  Google Scholar 

  • Counter, S. A., Buchanan, L. H., & Ortega, F. (2015). Blood lead levels in Andean infants and young children in Ecuador: An international comparison. Journal of Toxicology and Environmental Health, Part A, 78, 778–787.

    Article  Google Scholar 

  • Deckers, J., Nachtergaele, F., & Spaargaren, O. (1998). World reference base for soil resources. ACCO Publishers. 165 pp.

  • Etchevers, A., Glorennec, P., Le Strat, Y., Lecoffre, C., Bretin, P., & Le Tertre, A. (2015). Screening for elevated blood lead levels in children: Assessment of criteria and a proposal for new ones in France. International Journal of Environmental Research and Public Health, 12(12), 15366–15378. https://doi.org/10.3390/ijerph121214989.

    Article  CAS  Google Scholar 

  • Fan, J., Zhao, L., Kan, J., Qiu, H., Xu, X., & Cao, X. (2020). Uptake of vegetable and soft drink affected transformation and bioaccessibility of lead in gastrointestinal track exposed to lead-contaminated soil particles. Ecotoxicology and Environmental Safety, 194, 110411. https://doi.org/10.1016/j.ecoenv.2020.110411

    Article  CAS  Google Scholar 

  • FAO/WHO, 2011. General standards for contaminants and toxins in food and feed (CODEX-STAN, 193–1995).

  • Fu, J., & Cui, Y. (2013). In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: The influence of cooking and additives. Food and Chemical Toxicology, 59, 215–221. https://doi.org/10.1016/j.fct.2013.06.014

    Article  CAS  Google Scholar 

  • Garcia-Leston, J., Roma-Torres, J., Mayan, O., Schroecksnadel, S., Fuchs, D., Moreira, A. O., et al. (2012). Assessement of immunotoxicity parameters in individuals occupationally exposed to lead. Journal of Toxicology and Environmental Health, Part A, 75, 807–818.

    Article  CAS  Google Scholar 

  • Gerofke, A., Ulbig, E., Martin, A., Müller-Graf, C., Selhorst, T., Gremse, C., Spolders, M., Schafft, H., Heinemeyer, G., Greiner, M., Lahrssen-Wiederholt, M., & Hensel, A. (2018). Lead content in wild game shot with lead or non-lead ammunition – Does “state of the art consumer health protection” require non-lead ammunition? PLoS ONE, 13, e0200792. https://doi.org/10.1371/journal.pone.0200792

    Article  CAS  Google Scholar 

  • Glorennec, P., Bemrah, N., Tard, A., Robin, A., Bot, B. L., & Bard, D. (2007). Probabilistic modeling of young children’s overall lead exposure in France: Integrated approach for various exposure media. Environment International, 33, 937–945. https://doi.org/10.1016/j.envint.2007.05.004

    Article  CAS  Google Scholar 

  • Goix, S., Maurice, L., Laffont, L., Rinaldo, R., Lagane, C., Chmeleff, J., et al. (2019). Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes. Chemosphere, 219, 684–694.

    Article  CAS  Google Scholar 

  • Goix, S., Mombo, S., Schreck, E., Pierart, A., Lévêque, T., Deola, F., & Dumat, C. (2015). Field isotopic study of lead fate and compartmentalization in earthworm–soil–metal particle systems for highly polluted soil near Pb recycling factory. Chemosphere, 138, 10–17. https://doi.org/10.1016/j.chemosphere.2015.05.010

    Article  CAS  Google Scholar 

  • González-Grijalva, B., Meza-Figueroa, D., Romero, F. M., Robles-Morúa, A., Meza-Montenegro, M., García-Rico, L., & Ochoa-Contreras, R. (2019). The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. Science of The Total Environment, 657, 1468–1479. https://doi.org/10.1016/j.scitotenv.2018.12.148

    Article  CAS  Google Scholar 

  • Grenand, F. (1972). L’art et les techniques culinaires des Indiens Wayãpis de Guyane. Mémoire de Maîtrise.

  • Grenand P. Grenand F. and Ouhoud-Renoux F., 1999. Entre Fleuve et Forêt: Stratégies adaptatives du peuplement Wayãpi depuis le XVIIIè siècle. In: Bahuchet S., Bley D., Pagezy H. and Vernazza-Licht N. (Eds) L'homme et la forêt tropicale, Travaux de la Société d'Ecologie Humaine, pp. 223–235.

  • Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., & Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 30, 591–600. https://doi.org/10.1016/j.tibtech.2012.08.001

    Article  CAS  Google Scholar 

  • Hart, A. D., Oboh, C. A., Barimalaa, I. S., & Sokari, T. G. (2005). Concentrations of trace metals (lead, iron, copper and zinc) in crops harvested in some oil prospecting locations in rivers state, Nigeria. African Journal of Food Agriculture Nutrition and Development, 5(2), 1–21.

    Google Scholar 

  • Hiolle, M., Lechevalier, V., Floury, J., Boulier-Monthéan, N., Prioul, C., Dupont, D., & Nau, F. (2020). In vitro digestion of complex foods: How microstructure influences food disintegration and micronutrient bioaccessibility. Food Research International, 128, 108817. https://doi.org/10.1016/j.foodres.2019.108817

    Article  CAS  Google Scholar 

  • Hivert, G., Coquet, S., Glorennec, P., & Bard, D. (2002). Is compliance to current lead regulations safe enough for infants and toddlers? Revue d’Epidemiologie et de Sante Publique, 50, 297–305

    CAS  Google Scholar 

  • Hu, H., Téllez-Rojo, M. M., Bellinger, D., Smith, D., Ettinger, A. S., Lamadrid-Figueroa, H., et al. (2006). Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environmental Health Perspectives, 114, 1730–1735.

    Article  CAS  Google Scholar 

  • Hwang, Y. H., Hsiao, C. K., & Lin, P. W. (2019). Globally temporal transitions of blood lead levels of preschool children across countries of different categories of Human Development Index. Science of the Total Environment, 659, 1395–1402. https://doi.org/10.1016/j.scitotenv.2018.12.436.

    Article  CAS  Google Scholar 

  • Izquierdo, M., De Miguel, E., Ortega, M. F., & Mingot, J. (2015). Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere, 135, 312–318. https://doi.org/10.1016/j.chemosphere.2015.04.079

    Article  CAS  Google Scholar 

  • Jedrychowski, W., Perera, F., Jankowski, J., Rauh, V., Flak, E., Caldwell, K. L., et al. (2008). Prenatal low-level lead exposure and developmental delay of infants at age 6 months (Krakow inner city study). International Journal of Hygiene and Environmental, 211, 345–351.

    Google Scholar 

  • Jiang, Z., Lian, F., Wang, Z., & Xing, B. (2020). The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 71, 520–542.

    Article  CAS  Google Scholar 

  • Joint Expert Committee on Food Additives (Ed.), 2011. Evaluation of certain food additives and contaminants: seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives; [Geneva, 8 - 17 June 2010], WHO technical report series. World Health Organization, Geneva

  • Kan, J., Sima, J., & Cao, X. (2017). Transformation and bioaccessibility of lead induced by steamed bread feed in the gastrointestinal tract. Ecotoxicology and Environmental Safety, 137, 158–164. https://doi.org/10.1016/j.ecoenv.2016.11.025

    Article  CAS  Google Scholar 

  • Kalagbor, I. A., Dighi, N. K., & James, R. (2015). Levels of some heavy metals in cassava and plantain from farmlands in Kaani and Kpean in Khana Local Government Area of Rivers State. Journal of Applied Sciences and Enviromental Management, 19(2), 219–222. https://doi.org/10.4314/jasem.v19i2.7

    Article  CAS  Google Scholar 

  • Komárek, M., Ettler, V., Chrastný, V., & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: a review. Environment International, 34, 562–577. https://doi.org/10.1016/j.envint.2007.10.005.

  • Lamadrid-Figueroa, H., Téllez-Rojo, M. M., Hernandéz-Cadena, L., Mercado-García, A., Smith, D., Solano-Gonzaléz, M., et al. (2006). Biological markers of fetal lead exposure at each stage of pregnancy. Journal of Toxicology and Environmental Health A, 69, 1781–1796.

    Article  CAS  Google Scholar 

  • Lévêque, T., Dumat, C., Lagier, L., Schreck, E., Ruales, J., & Capowiez, Y. (2019). Influence of earthworm bioturbation on metals phytoavailability and human gastric bioaccessibility. Environmental Science and Pollution Research, 26, 20052–20063. https://doi.org/10.1007/s11356-018-3010-2

    Article  CAS  Google Scholar 

  • Li, F.-L., Liu, C.-Q., Yang, Y.-G., Bi, X.-Y., Liu, T.-Z., & Zhao, Z.-Q. (2012). Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: A Pb isotopic approach. Science of The Total Environment, 431, 339–347. https://doi.org/10.1016/j.scitotenv.2012.05.040

    Article  CAS  Google Scholar 

  • Li, J., Li, K., Cave, M., Li, H.-B., & Ma, L. Q. (2015). Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions. Journal of Hazardous Materials, 295, 55–62. https://doi.org/10.1016/j.jhazmat.2015.03.061

    Article  CAS  Google Scholar 

  • Lombardo, U., Iriarte, J., Hilbert, L., Ruiz-Perez, J., Capriles, J. M., & Veit, H. (2020). Early Holocene crop cultivation and landscape modification in Amazonia. Nature, 581, 190–193. https://doi.org/10.1038/s41586-020-2162-7

    Article  CAS  Google Scholar 

  • Mateo, R., Vallverdú-Coll, N., López-Antia, A., Taggart, M. A., Martínez-Haro, M., Guitart, R., et al. (2014). Reducing Pb poisoning in birds and Pb exposure in game meat consumers: The dual benefit of effective Pb shot regulation. Environment International, 63, 163–168. https://doi.org/10.1016/j.envint.2013.11.

    Article  CAS  Google Scholar 

  • Mombo, S., Schreck, E., Dumat, C., Laplanche, C., Pierart, A., Longchamp, M., Besson, P., & Castrec-Rouelle, M. (2016). Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize. Environmental Geochemistry and Health, 38, 869–883. https://doi.org/10.1007/s10653-015-9767-z

    Article  CAS  Google Scholar 

  • Monnot, A. D., Christian, W. V., Abramson, M. M., & Follansbee, M. H. (2015). An exposure and health risk assessment of lead (Pb) in lipstick. Food and Chemical Toxicology, 80, 253–260.

    Article  CAS  Google Scholar 

  • Obiora, S. C., Chukwu, A., Chibuike, G., & Nwegbu, A. N. (2019). Potentially harmful elements and their health implications in cultivable soils and food crops around lead-zinc mines in Ishiagu, Southeastern Nigeria. Journal of Geochemical Exploration, 204, 289–296. https://doi.org/10.1016/j.gexplo.2019.06.011.

    Article  CAS  Google Scholar 

  • Ouhoud-Renoux F. (2000). Wayãpi de Trois Sauts : un cas presqu'idéal de prédation ? In: Les peuples des forêts tropicales aujourd'hui, Vol. 4 (Eds P. et F. Grenand), ULB (Bruxelles).

  • Pollack, A. Z., Mumford, S. L., Mendola, P., Perkins, N. J., Rotman, Y., Wactawski-Wende, J., et al. (2015). Kidney biomarkers associated with blood lead, mercury and cadmium in premenopausal women: A prospective cohort study. Journal of Toxicology and Environmental Health, Part A, 78, 119–131.

    Article  CAS  Google Scholar 

  • Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead Uptake, Toxicity, and Detoxification in Plants. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology. (Vol. 213, pp. 113–136). New York: Springer. https://doi.org/10.1007/978-1-4419-9860-6_4

    Chapter  Google Scholar 

  • Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., et al. (2012). The concept of compositional data analysis in practice — Total major element concentrations in agricultural and grazing land soils of Europe. Science of The Total Environment, 426, 196–210. https://doi.org/10.1016/j.scitotenv.2012.02.032.

    Article  CAS  Google Scholar 

  • Rimbaud, D., Restrepo, M., Louison, A., Boukhari, R., Ardillon, V., Carles, G., et al. (2017). Blood lead levels and risk factors for lead exposure among pregnant women in western French Guiana: The role of manioc consumption. Journal of Toxicology and Environmental Health, Part A. https://doi.org/10.1080/15287394.2017.1331490.

    Article  Google Scholar 

  • Rocha, A., & Trujillo, K. A. (2019). Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology, 73, 58–80. https://doi.org/10.1016/j.neuro.2019.02.021

    Article  CAS  Google Scholar 

  • Sharafi, K., Nodehi, R. N., Mahvi, A. H., Pirsaheb, M., Nazmara, S., Mahmoudi, B., & Yunesian, M. (2019). Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model – Comparison of calculated human health risk from raw, cooked and digested rice. Food Chemistry, 299, 125126. https://doi.org/10.1016/j.foodchem.2019.125126

    Article  CAS  Google Scholar 

  • Skerfving, S., Bergdahl, I.A., 2015. Lead, In: Handbook on the Toxicology of Metals. Elsevier, pp. 911–967. https://doi.org/https://doi.org/10.1016/B978-0-444-59453-2.00043-3

  • Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

  • Stevenson, A. L., Scheuhammer, A. M., & Chan, H. M. (2005). Effects of nontoxic shot regulations on lead accumulation in ducks and American woodcock in Canada. Archives of Environmental Contamination and Toxicology, 48, 405–413.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews in Geophysics, 33, 241–265

    Article  Google Scholar 

  • Tritsch, I., Gond, V., Ozwald, J., Davy, D., & Grenand, P. (2012). Territorial dynamics in the Wayãpi and Teko Amerindian communities of the middle Oyapock, Camopi, French Guiana. Bois et Forêt des Tropiques, N°311(1), 49–61.

    Article  Google Scholar 

  • Tsuji, L., Wainman, B., Martin, I., Sutherland, C., Weber, J.-P., Dumas, P., et al. (2008). Lead shot contribution to blood lead of first Nations people: The use of lead isotopes to identify the source of exposure. Science of the Total Environment, 405, 180–185.

    Article  CAS  Google Scholar 

  • USCDC. (2012). Low level lead exposure harms children: A renewed call for primary prevention report of the advisory committee on childhood lead poisoning prevention of the centers for disease control and prevention. Atlanta, GA: Centers for Disease Control and Prevention. https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm.

  • Uzu, G., Sauvain, J.-J., Baeza-Squiban, A., Riediker, M., Sánchez Sandoval Hohl, M., Val, S., Tack, K., Denys, S., Pradère, P., & Dumat, C. (2011). In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a lead recycling plant. Environmental Science and Technology, 45, 7888–7895. https://doi.org/10.1021/es200374c

    Article  CAS  Google Scholar 

  • Uzu, G., Schreck, E., Xiong, T., Macouin, M., Lévêque, T., Fayomi, B., & Dumat, C. (2014). Urban Market Gardening in Africa: Foliar Uptake of Metal(loid)s and Their Bioaccessibility in Vegetables; Implications in Terms of Health Risks. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-014-2185-5

    Article  Google Scholar 

  • Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environmental Science and Technology, 44, 1036–1042. https://doi.org/10.1021/es902190u

    Article  CAS  Google Scholar 

  • Vázquez Bahéna, A. B., Talavera Mendoza, O., Moreno Godínez, Ma. E., Salgado Souto, S. A., Ruiz, J., & Huerta Beristain, G. (2017). Source apportionment of lead in the blood of women of reproductive age living near tailings in Taxco, Guerrero, Mexico: An isotopic study. Science of The Total Environment, 583, 104–114. https://doi.org/10.1016/j.scitotenv.2017.01.030.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., & Li, X. D. (2004). Lead contamination and isotopic composition of urban soils in Hong Kong. Science of The Total Environment, 319, 185–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the ARS (French Regional Health Agency) for cofounding this research with the French National Research Institute for Sustainable Development, IRD (IRD-CHAR Agreement, reference n°307170/00). We also want to express our gratitude to Jérôme Viers for his precious help in the Pb isotopes data treatment and to Aurélie Marquet for managing the HR-ICP-MS, both from the GET laboratory, and also to Rémy Freydier for managing the iCapQ ICP-MS at the HSM laboratory (France). Finally, we want to thank the DDSC Company in French Guiana for the sampling and nutrition surveys lead in 15 Amerindian families for almost three weeks. At last but not least, we are very grateful to the Amerindian Wayãpi families of Trois Sauts for their participation to the survey and their contribution to the study.

Author information

Authors and Affiliations

Authors

Contributions

Laurence Maurice contributed to conceptualization, methodology, formal analysis, human exposure calculation, supervision, funding acquisition, writing—original draft, and writing—review & editing. Fiorella Barraza was involved in formal analysis (total Pb and stable isotopes) and writing—review and editing. Isalyne Blondet was involved in formal analysis (total Pb and stable isotopes) and writing—review and editing.Michèle Ho-A-Chuck contributed to sampling campaign and dietary survey, logistics, and funding acquisition. Jessy Tablon contributed to sampling campaign and dietary survey, and logistics. Paul Brousse contributed to coordination of the health centers and biomonitoring of Amerindian families living along the Oyapock River. Magalie Demar contributed to research permits and logistics. Eva Schreck contributed to formal analysis (Pb) supervision and writing—review.

Corresponding author

Correspondence to Laurence Maurice.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, nor competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurice, L., Barraza, F., Blondet, I. et al. Childhood lead exposure of Amerindian communities in French Guiana: an isotopic approach to tracing sources. Environ Geochem Health 43, 4741–4757 (2021). https://doi.org/10.1007/s10653-021-00944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00944-9

Keywords

Navigation