Skip to main content
Log in

Decay Rates for Strong Solutions to the Compressible Navier–Stokes Equations without Heat Conductivity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider the compressible Navier–Stokes equations without heat conductivity in \({\mathbb {R}}^{3}.\) The global existence and uniqueness of strong solutions are established when the initial value towards its equilibrium is sufficiently small in \(H^{2}({\mathbb {R}}^{3}).\) The key uniform bound of entropy is obtained, even though the entropy is non-dissipative due to the absence of heat conductivity. Moreover, the time decay rates of global solutions are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, volume 140 of Pure and Applied Mathematics Series, 2nd edn. Academic Press, London (2003)

    Google Scholar 

  2. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical \(L^p\) framework. Arch. Ration. Mech. Anal. 224, 53–90 (2017)

    Article  MathSciNet  Google Scholar 

  3. Deckelnick, K.: Decay estimates for the compressible Navier–Stokes equations in unbounded domains. Math. Z. 209, 115–130 (1992)

    Article  MathSciNet  Google Scholar 

  4. Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal convergence rates for the compressible Navier–Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    Article  MathSciNet  Google Scholar 

  5. Duan, R.J., Liu, H.X., Ukai, S., Yang, T.: Optimal \(L^{p}\)-\(L^{q}\) convergence rates for the compressible Navier–Stokes equations with potential force. J. Differ. Equ. 238, 220–233 (2007)

    Article  ADS  Google Scholar 

  6. Duan, R.J., Ma, H.F.: Global existence and convergence rates for the 3-D compressible Navier–Stokes equations without heat conductivity. Indiana Univ. Math. J. 57, 2299–2319 (2008)

    Article  MathSciNet  Google Scholar 

  7. Guo, Y., Wang, Y.J.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  Google Scholar 

  8. Hoff, D., Zumbrun, K.: Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676 (1995)

    Article  MathSciNet  Google Scholar 

  9. Hoff, D., Zumbrun, K.: Pointwise decay estimates for multi-dimensional Navier–Stokes diffusion waves. Z. Angew. Math. Phys. 48, 597–614 (1997)

    Article  MathSciNet  Google Scholar 

  10. Kawashima, S.: Systems of a Hyperbolic-Parabolic Composite Type with applications to the equations of magnetohydrodynamics. Kyoto Univeisity (1983)

  11. Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \({\mathbb{R}}^3\). Commun. Math. Phys. 200, 621–659 (1999)

    Article  ADS  Google Scholar 

  12. Liu, T.P., Wang, W.K.: The pointwise estimates of diffusion waves for the Navier–Stokes equations in odd multi-dimensionals. Commun. Math. Phys. 196, 145–173 (1998)

    Article  ADS  Google Scholar 

  13. Liu, T.P., Zeng, Y.N.: Compressible Navier–Stokes equations with zero heat conductivity. J. Differ. Equ. 153, 225–291 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci. 55, 337–342 (1979)

    Article  MathSciNet  Google Scholar 

  16. Matsumura, A., Nishida, T.: Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9, 399–418 (1985)

    Article  MathSciNet  Google Scholar 

  18. Tan, Z., Wang, H.Q.: Global existence and optimal decay rate for the strong solutions in \(H^{2}\) to the 3-D compressible Navier-Stokes equations without heat conductivity. J. Math. Anal. Appl. 394, 571–580 (2012)

    Article  MathSciNet  Google Scholar 

  19. Tan, Z., Wang, Y.J.: On hyperbolic-dissipative systems of composite type. J. Differ. Equ. 260, 1091–1125 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ukai, S., Yang, T., Zhao, H.J.: Convergence rate for the compressible Navier–Stokes equations with external force. J. Hyperbolic Differ. Equ. 3, 561–574 (2006)

    Article  MathSciNet  Google Scholar 

  21. Wang, W.J., Wang, W.K.: Large time behavior for the system of a viscous liquid-gas two-phase flow model in \({\mathbb{R}}^3\). J. Differ. Equ. 261, 5561–5589 (2016)

    Article  ADS  Google Scholar 

  22. Wang, Y.J., Tan, Z.: Global existence and optimal decay rate for the strong solutions in \(H^{2}\) to the compressible Navier-Stokes equations. Appl. Math. Lett. 24, 1778–1784 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

W.L. Li, Y.H. Wang and L. Yao are supported by the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (Grant No. 2019JC-26) and National Natural Science Foundation of China #11931013. W.J. Wang is supported by the National Natural Science Foundation of China #11871341,12071152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yao.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Communicated by I. M. Gamba

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, W., Wang, Y. et al. Decay Rates for Strong Solutions to the Compressible Navier–Stokes Equations without Heat Conductivity. J. Math. Fluid Mech. 23, 61 (2021). https://doi.org/10.1007/s00021-021-00590-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00590-2

Keywords

Mathematics Subject Classification

Navigation