Skip to main content

Advertisement

Log in

Enhanced Photodynamic Suppression of Enterococcus faecalis Using Curcumin-Loaded Zeolite

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Antibacterial photodynamic therapy (aPDT) has drawn increasing attention as a noninvasive approach to remove bacterial contaminants such as E. faecalis from the tooth surface. In this study, curcumin (CUR) was loaded into ZSM-5 zeolite and the prepared photosensitizers (CUR@ZSM) were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet–visible spectroscopy (UV–Vis). The loading efficiency, and release behavior of CUR were studied in CUR@ZSM. The antimicrobial and anti-biofilm potential of the photosensitizer were evaluated against E. faecalis via colony forming unit and crystal violet assays, respectively. No significant changes were observed in the size, morphology and crystallinity of the zeolite after CUR loading. CUR@ZSM showed a significant photodynamic inactivation effect through complete bacterial elimination and reduced the biofilm formation ability of E. faecalis up to about 80%. The results revealed that CUR@ZSM could be considered as a new potential photosensitizer for further study against endodontic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Peciuliene, R. Maneliene, E. Balcikonyte, S. Drukteinis, and V. Rutkunas (2008). Microorganisms in root canal infections: a review. Stomatologija 10, 4–9.

    PubMed  Google Scholar 

  2. J. F. Siqueira Jr. and I. N. Rocas (2009). Diversity of endodontic microbiota revisited. J. Dent. Res. 88, 969–981.

    Article  PubMed  Google Scholar 

  3. H. H. Hancock, A. Sigurdsson, M. Trope, and J. Moiseiwitsch (2001). Bacteria isolated after unsuccessful endodontic treatment in a North American population. Oral Surg. Oral. Med. Oral Pathol. Oral Radiol. Endodontol. 91, 579–586.

    Article  Google Scholar 

  4. R. M. Love (2001). Enterococcus faecalis—a mechanism for its role in endodontic failure. Int. Endod. J. 34, 399–405.

    Article  CAS  PubMed  Google Scholar 

  5. D. Figdor, R. M. Davies, and G. Sundqvist (2003). Starvation survival, growth and recovery of Enterococcus faecalis in human serum. Oral Microbiol. Immunol. 18, 234–239.

    Article  CAS  PubMed  Google Scholar 

  6. L. Wang, M. Dong, J. Zheng, Q. Song, W. Yin, J. Li, and W. Niu (2011). Relationship of biofilm formation and gelE gene expression in Enterococcus faecalis recovered from root canals in patients requiring endodontic retreatment. J. Endod. 37, 631–636.

    Article  CAS  PubMed  Google Scholar 

  7. L. López-Jiménez, E. Fusté, B. Martínez-Garriga, J. Arnabat-Domínguez, T. Vinuesa, and M. Viñas (2015). Effects of photodynamic therapy on Enterococcus Faecalis biofilms. Lasers Med. Sci. 5, 1519–1526.

    Article  Google Scholar 

  8. L. Tabenski, W. Buchalla, and T. Maisch (2014). Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Front. Microbiol. 5, 1–17.

    Google Scholar 

  9. W. M. Sharman, C. M. Allen, and J. E. van Lier (1999). Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today. 11, 507–517.

    Article  Google Scholar 

  10. M. R. Hamblin and T. Hasan (2004). Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. L. Huang, T. Dai, and M. R. Hamblin (2010). Antimicrobial photodynamic inactivation and photodynamic therapy for infections. Methods Mol. Biol. 635, 155–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Persadmehr, C. D. Torneck, D. G. Cvitkovitch, V. Pinto, I. Talior, M. Kazembe, S. Shrestha, C. A. McCulloch, and A. Kishen (2014). Bioactive chitosan nanoparticles and photodynamic therapy inhibit collagen degradation in vitro. J. Endod. 40, 703–709.

    Article  PubMed  Google Scholar 

  13. L. N. Dovigo, A. C. Pavarina, J. C. Carmello, A. L. Machado, I. L. Brunetti, and V. S. Bagnato (2011). Susceptibility of clinical isolates of Candida to photodynamic effects of Curcumin. Lasers Surg. Med. 43, 927–934.

    Article  PubMed  Google Scholar 

  14. N. C. Araujo, C. R. Fontana, M. E. Gerbi, and V. S. Bagnato (2012). Overall-mouth disinfection by photodynamic therapy using Curcumin. Photomed. Laser Surg. 30, 96–101.

    Article  CAS  PubMed  Google Scholar 

  15. Sh. Devaraj, N. Jagannathan, and P. Neelakantan (2016). Antibiofilm efficacy of photoactivated Curcumin, triple and double antibiotic paste, 2% chlorhexidine and calcium hydroxide against Enterococcus faecalis in vitro. Sci. Rep. 6, 24797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. A. Dahl, P. Bilski, K. J. Reszka, and C. F. Chignell (1994). Photocytotoxicity of Curcumin. Photochem. Photobiol. 59, 290–294.

    Article  CAS  PubMed  Google Scholar 

  17. K. O. Wikene, A. B. Hegge, E. Bruzell, and H. H. Tonnesen (2015). Formulation and characterization of lyophilized curcumin solid dispersions for antimicrobial photodynamic therapy (aPDT): studies on curcuminand curcuminoids LII. Drug Dev. Ind. Pharm. 41, 969–977.

    Article  CAS  PubMed  Google Scholar 

  18. Q. Q. Yanga, A. K. Farhaa, G. Kima, K. Gula, R.-Y. Ganb, and H. Corkea (2020). Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends Food Sci. Technol. 97, 341–354.

    Article  CAS  Google Scholar 

  19. M. Pourhajibagher, N. Chiniforush, A. Monzavi, H. Barikani, M. Monzavi, S. Sobhani, S. Shahabi, and A. Bahador (2018). Inhibitory effects of antimicrobial photodynamic therapy with Curcumin on biofilm-associated gene expression profile of Aggregatibacter actinomycetemcomitans. J. Dent. (Tehran) 15, 169–177.

    Google Scholar 

  20. J. Ma, H. Shi, H. Sun, J. Li, and Y. Bai (2019). Antifungal effect of photodynamic therapy mediated by Curcumin on Candida albicans biofilms in vitro. Photodiagn. Photodyn. Ther. 27, 280–287.

    Article  CAS  Google Scholar 

  21. H. Lee, S. Kang, S. Jeong, K. Chung, and B. Kim (2017). Antibacterial photodynamic therapy with Curcumin and Curcuma xanthorrhiza extract against Streptococcus mutans. Photodiagn. Photodyn. Ther. 20, 116–119.

    Article  CAS  Google Scholar 

  22. R. Amorim, N. Vilaça, O. Martinho, R. M. Reis, M. Sardo, J. Rocha, M. Fonseca, F. Baltazar, and I. C. Neves (2012). Zeolite structures loading with an anticancer compound as drug delivery systems. J. Phys. Chem. C 116, 25642–25650.

    Article  CAS  Google Scholar 

  23. Z. Ahali Abadeh, G. Saviano, P. Ballirano, and G. Santonicalo (2020). Curcumin-loaded Zeolite as anticancer drug carrier: effect of curcumin adsorption on zeolite structure. Pure Appl. Chem. 92, 461–471.

    Article  CAS  Google Scholar 

  24. P. Tavolaro, S. Catalano, G. Martino, and A. Tavolaro (2016). Zeolite inorganic scaffolds for novel biomedical application: effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability. Appl. Surf. Sci. 380, 135–140.

    Article  CAS  Google Scholar 

  25. P. Tavolaro, G. Martino, S. Andò, and A. Tavolaro (2016). Fabrication and evaluation of novel zeolite membranes to control the neoplastic activity and anti-tumoral drug treatments in human breast cancer cells. Part 1: Synthesis and characterization of Pure Zeolite Membranes and Mixed Matrix Membranes for adhesion and growth of cancer cells. Mater. Sci. Eng. C 69, 894–904.

    Article  CAS  Google Scholar 

  26. G. Tegl, V. Stagl, A. Mensah, D. Huber, W. Somitsch, S. Grosse-Kracht, and G. M. Guebitz (2018). The chemo enzymatic functionalization of chitosan zeolite particles provides antioxidant and antimicrobial properties. Eng. Life Sci. 18, 334–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. Akbari, M. Pourhajibagher, F. Hosseini, N. Chiniforush, E. Gholibegloo, M. Khoobi, S. Shahabi, and A. Bahador (2017). The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagn. Photodyn. Ther. 20, 148–153.

    Article  CAS  Google Scholar 

  28. E. Gholibegloo, A. Karbasi, M. Pourhajibagher, N. Chiniforush, A. Ramazani, T. Akbari, A. Bahador, and M. Khoobi (2018). Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus Mutans. J. Photochem. Photobiol. B 181, 14–22.

    Article  CAS  PubMed  Google Scholar 

  29. M. M. Yallapu, S. F. Othman, E. T. Curtis, N. A. Bauer, N. Chauhan, D. Kumar, M. S. Jaggi, and C. Chauhan (2012). Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomed. 7, 1761–1779.

    CAS  Google Scholar 

  30. N. Chiniforush, M. Pourhajibagher, S. Parker, S. Shahabi, and A. Bahador (2016). The in vitro effect of antimicrobial photodynamic therapy with indocyanine green on Enterococcus faecalis: influence of a washing vs non-washing procedure. Photodiagn. Photodyn. Ther. 16, 119–123.

    Article  CAS  Google Scholar 

  31. A. A. Miles, S. S. Misra, and J. O. Irwin (1938). The estimation of bactericidal power of the blood. J. Hyg. 38, 732–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Cheng, L. J. Wang, J. S. Li, Y. C. Yang, and X. Y. Sun (2005). Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template. Mater Lett. 59, 3427–3430.

    Article  CAS  Google Scholar 

  33. P. Morales-Pacheco, J. Dominguez, L. Bucio, F. Alvarez, U. Sedran, and M. Falco (2011). Synthesis of FAU (Y)-and MFI (ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal. Today 166, 25–38.

    Article  CAS  Google Scholar 

  34. J. Cejka, H. Van Bekkum, A. Corma, and F. Schueth, Introduction to zeolite molecular sieves, vol. 168 (Elsevier Science, Amsterdam , 2007).

    Google Scholar 

  35. Z. Ahali Abadeh, G. Saviano, P. Ballirano, and M. G. Santonicola (2019) Curcumin-loaded zeolite as anticancer drug carrier: effect of curcumin adsorption on zeolite structure. Pure Appl. Chem., 1–11.

  36. M. Karimi, M. Habibizad, K. Rostamizadeh, M. Khatamian, and B. Divband (2019). Preparation and characterization of nanocomposites based on different zeolite frameworks as carriers for anticancer drug: zeolite Y versus ZSM-5. Polym. Bull. 76, 2233–2252.

    Article  CAS  Google Scholar 

  37. Mk. Amosa, M. AlKhatib, M. Jami, D. Jimat, O. Uthman, and S. Muyibi (2014). Morphological synthesis and environmental application of ZSM-5 zeolite crystals from combined low-water and fluoride syntheses routes. Adv. Environ. Biol. 8, 613–625.

    CAS  Google Scholar 

  38. A. Ameri, T. Taghizadeh, A. Talebian-Kiakalaieh, H. Forootanfar, S. Mojtabavi, H. Jahandar, S. Tarighi, and M. A. Faramarzi (2021). Bio-removal of phenol by the immobilized laccase on the fabricated parent and hierarchical NaY and ZSM-5 zeolites. J. Taiwan Inst. Chem. Eng. 120, 300–312.

    Article  CAS  Google Scholar 

  39. T. M. Kolev, E. A. Velcheva, B. A. Stamboliyska, and M. Spiteller (2005). DFT and experimental studies of the structure and vibrational spectra of Curcumin. Int. J. Quantum Chem. 102, 1069–1079.

    Article  CAS  Google Scholar 

  40. X. Li, Q. Yang, J. Ouyang, H. Yang, and S. Chang (2016). Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl. Clay Sci. 126, 306–312.

    Article  CAS  Google Scholar 

  41. D. Preisig, D. Haid, F. J. O. Varum, R. Bravo, R. Alles, J. Huwyler, and M. Puchkov (2014). Drug loading into porous calcium carbonate microparticles by solvent evaporation. Eur. J. Pharm. Biopharm. 87, 548–558.

    Article  CAS  PubMed  Google Scholar 

  42. L. A. Silva, A. B. Novaes Jr., R. R. de Oliveira, P. Nelson-Filho, M. Santamaria Jr., and R. A. Silva (2012). Antimicrobial photodynamic therapy for the treatment of teeth with apical periodontitis: a histopathological evaluation. J. Endod. 38, 360–366.

    Article  PubMed  Google Scholar 

  43. G. Pileggi, J. C. Wataha, M. Girard, I. Grad, J. Schrenzel, N. Lange, and S. Bouillaguet (2013). Blue light-mediated inactivation of Enterococcus faecalis in vitro. Photodiagn. Photodyn. Ther. 10, 134–140.

    Article  CAS  Google Scholar 

  44. P. Neelakantan, C. Q. Cheng, V. Ravichandran, T. Maoa, P. Sriraman, S. Sridharan, Ch. Subbarao, S. Sharma, and A. Kishen (2015). Photoactivation of curcumin and sodium hypochlorite to enhance antibiofilm efficacy in root canal dentin. Photodiagn. Photodyn. Ther. 12, 108–114.

    Article  CAS  Google Scholar 

  45. M. Pourhajibagher, N. Chiniforush, S. Shahabi, R. Ghorbanzadeh, and A. Bahador (2016). Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagn. Photodyn. Ther. 15, 159–166.

    Article  CAS  Google Scholar 

  46. A. B. Hegge, T. Andersen, J. E. Melvik, E. Bruzell, S. Kristensen, and H. H. Tonnesen (2011). Formulation and bacterial phototoxicity of Curcumin loaded alginate foams for wound treatment applications: studies on Curcumin and curcuminoides XLII. J. Pharm. Sci. 100, 174–185.

    Article  CAS  PubMed  Google Scholar 

  47. A. B. Hegge, T. T. Nielson, K. L. Larsen, E. Bruzell, and H. H. Tonnesen (2012). Impact of curcumin supersaturation in antibacterial photodynamic therapy-effect of cyclodextrin type and amount: studies on Curcumin and curcuminoides XLV. J. Pharm. Sci. 101, 1524–1537.

    Article  CAS  PubMed  Google Scholar 

  48. M. Smolinska, G. Cik, F. Sersen, M. Caplovicova, A. Takacova, and M. Kopanica (2015). The hybrid Methylene blue–Zeolite system: a higher efficient photocatalyst for photoinactivation of pathogenic microorganisms. Int. J. Environ. Sci. Technol. 12, 61–72.

    Article  CAS  Google Scholar 

  49. Y. Kohno, Y. Shibata, N. Oyaizu, K. Yoda, M. Shibata, and R. Matsushima (2008). Stabilization of flavylium dye by incorporation into the pore of protonated zeolites. Microporous Mesoporous Mater. 114, 373–379.

    Article  CAS  Google Scholar 

  50. H. Kariminezhad, M. Habibi, and N. Mirzababay (2015). Nanosized ZSM-5 will improve photodynamic therapy using Methylene blue. J. Photochem. Photobiol. B 148, 107–112.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Research Council of Tehran University of Medical Sciences (Grant Number: 42907).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alieh Ameri or Mehdi Khoobi.

Ethics declarations

Conflict of interest

The authors of this manuscript do not have any financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaedi, A., Torshabi, M., Chahrogh, A.R. et al. Enhanced Photodynamic Suppression of Enterococcus faecalis Using Curcumin-Loaded Zeolite. J Clust Sci 33, 1543–1551 (2022). https://doi.org/10.1007/s10876-021-02085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02085-6

Keywords

Navigation