Skip to main content
Log in

The Do’s and Don’ts for Increasing the Accuracy of Face Recognition on VGGFace2 Dataset

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, developments in face recognition are examined. Some methods are presented to increase the accuracy rate in face recognition by using transfer learning with VGGFace2 dataset and 4 different CNN models. While some of these tested offers decreased the accuracy rate, some of them increased. Effects of histogram balancing, expanding the training data, extracting the effect of non-facial portions of images and vertically aligning images on the accuracy rate were determined and compared to the accuracy rates of original images. As the optimal solution, transfer learning from the InceptionV3 model was preferred, vertical positioning was made, and an accuracy rate of 95.47% was achieved when 10% of the images were used for testing and 90% for training in a 100 people subset of VGGFace2 dataset. In LFW, one of the widely used datasets in the literature, an accuracy rate of 100% has been achieved by exceeding the highest accuracy achieved so far and all images in the LFW database have been recognized without any problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeiler, M.D.; Fergus, R.: Visualizing and understanding convolutional networks (2014). https://doi.org/10.1007/978-3-319-10590-1_53

  2. Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P.: Visualizing higher-layer features of a deep network. Bernoulli 1341, 1 (2009)

    Google Scholar 

  3. I. L. S. V. R. Competition. LSVRC (2012). http://www.image-net.org/challenges. Accessed 27 Dec 2016

  4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2, 1097–1105 (2012)

    Google Scholar 

  5. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition (2016). https://doi.org/10.1109/CVPR.2016.90

  6. Dollár, P.; Wojek, C.; Schiele, B.; Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. (2012). https://doi.org/10.1109/TPAMI.2011.155

    Article  Google Scholar 

  7. Yang, M.H.; Kriegman, D.J.; Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2002). https://doi.org/10.1109/34.982883

    Article  Google Scholar 

  8. Ye, Q.; Doermann, D.: Text detection and recognition in imagery: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2015). https://doi.org/10.1109/TPAMI.2014.2366765

    Article  Google Scholar 

  9. Sun, Z.; Bebis, G.; Miller, R.: On-road vehicle detection: a review. IEEE Trans. Pattern Anal. Mach. Intell. (2006). https://doi.org/10.1109/TPAMI.2006.104

    Article  Google Scholar 

  10. Pinkney, J.: MTCNN Face Detection. MatWorks (2020). https://www.github.com/matlab-deep-learning/mtcnn-face-detection

  11. Graves, A.; Jaitly, N.; Mohamed, A.R.: Hybrid speech recognition with deep bidirectional LSTM (2013).: https://doi.org/10.1109/ASRU.2013.6707742

  12. Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. (2016). https://doi.org/10.1109/TBME.2015.2496264

    Article  Google Scholar 

  13. Al-Ayyoub, M.; Alzu’Bi, S.M.; Jararweh, Y.; Alsmirat, M.A.: A GPU-based breast cancer detection system using single pass fuzzy C-means clustering algorithm. In: International Conference on Multimedia Computing and Systems—Proceedings, pp. 650–654 (2017). https://doi.org/10.1109/ICMCS.2016.7905595

  14. Alzu’Bi, S.; Al-Qatawneh, S.; Alsmirat, M.: Transferable HMM trained matrices for accelerating statistical segmentation time. In: 2018 5th International Conference on Social Networks Analysis, Management and Security, SNAMS 2018, pp. 172–176 (2018). https://doi.org/10.1109/SNAMS.2018.8554487

  15. Sutskever, I.; Hinton, G.; Krizhevsky, A.; Salakhutdinov, R.R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2008)

  17. Cao, Z.; Yin, Q.; Tang, X.; Sun, J.: Face recognition with learning-based descriptor (2010). https://doi.org/10.1109/CVPR.2010.5539992

  18. Chen, D.; Cao, X.; Wen, F.; Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification (2013). https://doi.org/10.1109/CVPR.2013.389

  19. Simonyan, K.; Parkhi, O.M.; Vedaldi, A.; Zisserman, A.: Fisher vector faces in the wild (2013). https://doi.org/10.5244/C.27.8

  20. Sun, Y.; Wang, X.; Tang, X.: Deep learning face representation from predicting 10,000 classes (2014). https://doi.org/10.1109/CVPR.2014.244

  21. Bansal, A.; Castillo, C.; Ranjan, R.; Chellappa, R.: The do’s and don’ts for CNN-Based face verification (2017). https://doi.org/10.1109/ICCVW.2017.299

  22. Phillips, P.J.; Wechsler, H.; Huang, J.; Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. (1998). https://doi.org/10.1016/s0262-8856(97)00070-x

    Article  Google Scholar 

  23. Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. (2001). https://doi.org/10.1109/34.927464

    Article  Google Scholar 

  24. Georghiades, A.: Yale Face Database. Cent. Comput. Vis. Control Yale Univ. (1997). http//cvc.yale.edu/projects/yalefaces/yalefa

  25. Ricanek, K.; Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression (2006).: https://doi.org/10.1109/FGR.2006.78

  26. Kemelmacher-Shlizerman, I.; Seitz, S.M.; Miller, D.; Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale (2016). https://doi.org/10.1109/CVPR.2016.527

  27. Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J.: MS-celeb-1M: a dataset and benchmark for large-scale face recognition (2016). https://doi.org/10.1007/978-3-319-46487-9_6

  28. Cao, Q.; Shen, L.; Xie, W.; Parkhi, O.M.; Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age (2018). https://doi.org/10.1109/FG.2018.00020

  29. Şafak, E.; Barışçı, N.: Age and gender prediction using convolutional neural networks. In: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–7 (2018)

  30. Berg, T.; Belhumeur, P.N.: Tom-vs-Pete classifiers and identity-preserving alignment for face verification (2012). https://doi.org/10.5244/C.26.129

  31. Berg, T.; Belhumeur, P.N.: POOF: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation (2013). https://doi.org/10.1109/CVPR.2013.128

  32. Cao, X.; Wipf, D.; Wen, F.; Duan, G.; Sun, J.: A practical transfer learning algorithm for face verification (2013). https://doi.org/10.1109/ICCV.2013.398

  33. Chen, D.; Cao, X.; Wang, L.; Wen, F.; Sun, J.: Bayesian face revisited: a joint formulation (2012). https://doi.org/10.1007/978-3-642-33712-3_41

  34. Guillaumin, M.; Verbeek, J.; Schmid, C.: Is that you? Metric learning approaches for face identification (2009). https://doi.org/10.1109/ICCV.2009.5459197

  35. Huang, G.B.; Lee, H.; Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks (2012).https://doi.org/10.1109/CVPR.2012.6247968

  36. Kumar, N.; Berg, A.C.; Belhumeur, P.N.; Nayar, S.K.: Attribute and simile classifiers for face verification (2009). https://doi.org/10.1109/ICCV.2009.5459250

  37. Sun, Y.; Liang, D.; Wang, X.; Tang, X.: Deepid3: face recognition with very deep neural networks (2015). arXiv Prepr. arXiv1502.00873

  38. Jayaraman, U.; Gupta, P.; Gupta, S.; Arora, G.; Tiwari, K.: Recent development in face recognition. Neurocomputing (2020). https://doi.org/10.1016/j.neucom.2019.08.110

    Article  Google Scholar 

  39. Viola, P.; Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. (2004). https://doi.org/10.1023/B:VISI.0000013087.49260.fb

    Article  Google Scholar 

  40. Masi, I.; Wu, Y.; Hassner, T.; Natarajan, P.: Deep face recognition: a survey (2019). https://doi.org/10.1109/SIBGRAPI.2018.00067

  41. Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv Prepr. arXiv1409.1556

  42. Szegedy, C.; et al.: Going deeper with convolutions (2015). https://doi.org/10.1109/CVPR.2015.7298594

  43. Michele, A.; Colin, V.; Santika, D.D.: Mobilenet convolutional neural networks and support vector machines for palmprint recognition (2019). https://doi.org/10.1016/j.procs.2019.08.147

  44. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K.: SqueezeNet. arXiv (2016)

  45. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z.:Rethinking the Inception Architecture for Computer Vision (2016). doi: https://doi.org/10.1109/CVPR.2016.308.

  46. Domhan, T.; Springenberg, J.T.; Hutter, F.: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves (2015)

  47. Pan, S.J.; Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  48. Hasan, M.K.; Pal, C.J.: Improving alignment of faces for recognition (2011). https://doi.org/10.1109/ROSE.2011.6058545

  49. Matlab, S.: What is MATLAB? MathWorks, Natick (2012)

    Google Scholar 

  50. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition (2019). https://doi.org/10.1109/CVPR.2019.00482

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Ali Erbir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbir, M.A., Ünver, H.M. The Do’s and Don’ts for Increasing the Accuracy of Face Recognition on VGGFace2 Dataset. Arab J Sci Eng 46, 8901–8911 (2021). https://doi.org/10.1007/s13369-021-05693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05693-6

Keywords

Navigation