Skip to main content

Advertisement

Log in

Surface phase stability of surface segregated AgPd and AgCu nanoalloys in an oxygen atmosphere

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The geometric structure of 38-atom AgPd and AgCu nanoalloys is obtained by the genetic algorithm and density functional theory for all compositions and their surface phase stability diagrams are established to provide a clear image for the initial oxidation process. Ag surface segregation is confirmed for both AgPd and AgCu nanoalloys in vacuum. Pure Pd and Cu nanoparticles have lower surface phase stability than bulk metals to be oxidized and the alloying can improve the oxidation resistance. Segregated AgCu nanoalloys have higher phase stability than mixed AgCu in vacuum and have lower surface phase stability than mixed AgCu nanoalloys in an oxygen atmosphere. Unexpectedly, segregated AgPd nanoalloys have both higher phase stability in vacuum and higher surface phase stability in an oxygen atmosphere than that of mixed AgPd nanoalloys. The higher surface phase stability of segregated AgPd nanoalloy could be attributed to the slight elevation of Pd Milliken charge and negative shift of d-band center. Compared with the selective oxidation in conventional alloy oxidation models where the selective oxidation is related to alloy composition, the nanoalloy oxidation is proposed to correlate with surface segregation in AgPd and AgCu nanoalloys in this work, which promotes the development of the conventional alloy oxidation models in that the surface segregation is a precursor to the surface oxidation of nanoalloy and plays a critical role in the selective oxidation of nanoalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data that support the results of this research are included in the document.

Code availability

Not applicable.

References

  1. J. Fan, H. Du, Y. Zhao, Q. Wang, Y. Liu, D. Li, J. Feng, ACS Catal. 10, 13560 (2020)

    Google Scholar 

  2. Y. Jin, F. Chen, T. Jin, L. Guo, J. Wang, J. Mater. Chem. A 8(48), 25780–25790 (2020)

    Google Scholar 

  3. J. Lee, M. Young Kim, J. Hong Jeon, D.H. Lee, K.N. Rao, D.G. Oh, E. Jeong Jang, E. Kim, S.C. Na, H.S. Han, J.H. Kwak, Appl. Catal. B Environ. 260, 118098 (2020)

    Google Scholar 

  4. H. Duan, R. You, S. Xu, Z. Li, K. Qian, T. Cao, W. Huang, X. Bao, Angew. Chem. 131, 12043 (2019)

    Google Scholar 

  5. H. Nie, J.Y. Howe, P.T. Lachkov, Y.-H.C. Chin, ACS Catal. 9, 5445 (2019)

    Google Scholar 

  6. H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F.B. Prinz, J.K. Nørskov, Y. Cui, Science 354, 1031 (2016)

    ADS  Google Scholar 

  7. S. Piccinin, C. Stampfl, M. Scheffler, Surf. Sci. 603, 1467 (2008)

    ADS  Google Scholar 

  8. G.W. Zhou, J.A. Eastman, R.C. Birtcher, P.M. Baldo, J.E. Pearson, L.J. Thompson, L. Wang, J.C. Yang, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2433714

    Article  Google Scholar 

  9. W.-X. Li, C. Stampfl, M. Scheffler, Phys. Rev. B 68, 165412 (2003)

    ADS  Google Scholar 

  10. J.R. Kitchin, K. Reuter, M. Scheffler, Phys. Rev. B 77, 075437 (2008)

    ADS  Google Scholar 

  11. S. Piccinin, C. Stampfl, M. Scheffler, Phys. Rev. B 77, 075426 (2007)

    ADS  Google Scholar 

  12. B. Pan, F. Chen, K. Bo, J. Wang, Q. Tang, L. Guo, Q. Wang, Z. Li, W. Bian, J. Wang, Nanoscale 12, 11659 (2020)

    Google Scholar 

  13. Y. Jin, F. Chen, L. Guo, J. Wang, B. Kou, T. Jin, H. Liu, ACS Appl. Mater. Interfaces. 12, 26694 (2020)

    Google Scholar 

  14. L. Guo, F. Chen, T. Jin, H. Liu, N. Zhang, Y. Jin, Q. Wang, Q. Tang, B. Pan, Nanoscale 12, 3469 (2020)

    Google Scholar 

  15. J. Wang, F. Chen, Y. Jin, L. Guo, X. Gong, X. Wang, R. Johnston, Nanoscale 11, 14174 (2019)

    Google Scholar 

  16. C. Taylor, M. Neurock, J. Scully, J. Electrochem. Soc. 155, C407 (2008)

    Google Scholar 

  17. L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, J. Am. Chem. Soc. 132, 596 (2009)

    Google Scholar 

  18. R. Jinnouchi, T. Suzuki, Y. Morimoto, Catal. Today 262, 100 (2015)

    Google Scholar 

  19. J.A. Eastman, P.H. Fuoss, L.E. Rehn, P.M. Baldo, G.W. Zhou, D.D. Fong, L.J. Thompson, Appl. Phys. Lett. 87, 051914 (2005)

    ADS  Google Scholar 

  20. N. Zhang, F. Chen, L. Guo, Phys. Chem. Chem. Phys. 21, 22598 (2019)

    Google Scholar 

  21. Q. Wang, F. Chen, Q. Tang, L. Guo, T.T. Gebremariam, T. Jin, H. Liu, B. Kou, Z. Li, W. Bian, Appl. Catal. B Environ. 270, 118861 (2020)

    Google Scholar 

  22. T. Gebremariam, F. Chen, B. Kou, L. Guo, B. Pan, Q. Wang, Z. Li, W. Bian, Electrochimica Acta 354, 136678 (2020)

    Google Scholar 

  23. Q. Wang, F. Chen, L. Guo, T. Jin, H. Liu, X. Wang, X. Gong, Y. Liu, J. Mater. Chem. A 7, 16122 (2019)

    Google Scholar 

  24. Q. Tang, F. Chen, T. Jin, L. Guo, Q. Wang, H. Liu, J. Mater. Chem. A 7, 22996 (2019)

    Google Scholar 

  25. Q. Wang, F. Chen, Q. Tang, L. Guo, T. Jin, B. Pan, J. Wang, Z. Li, B. Kou and W. Bian, Nano Research (2020). https://doi.org/10.1007/s12274-020-3220-z

  26. N. Zhang, F. Chen, X. Wu, Q. Wang, A. Qaseem, Z. Xia, J. Mater. Chem. A 5, 7043 (2017)

    Google Scholar 

  27. N. Zhang, F. Chen, X. Wu, Sci. Rep. 5, 11984 (2015)

    ADS  Google Scholar 

  28. X. Wu, F. Chen, N. Zhang, Y. Lei, Y. Jin, A. Qaseem, R. Johnston, Small 13, 1603387 (2017)

    Google Scholar 

  29. X. Wu, F. Chen, N. Zhang, A. Qaseem, R. Johnston, Small 13, 1603876 (2017)

    Google Scholar 

  30. X. Wu, F. Chen, N. Zhang, A. Qaseem, R. Johnston, J. Mater. Chem. A 4, 3527 (2016)

    Google Scholar 

  31. Y. Jin, F. Chen, Electrochim. Acta 158, 437 (2015)

    Google Scholar 

  32. X. Wu, F. Chen, Y. Jin, N. Zhang, R. Johnston, ACS Appl. Mater. Interfaces. 7, 17782 (2015)

    Google Scholar 

  33. N. Zhang, F. Chen, Y. Jin, J. Wang, T. Jin, B. Kou, J. Catal. 384, 37 (2020)

    Google Scholar 

  34. N. Zhang, F. Chen, D. Liu, Z. Xia, ACS Appl. Energy Mater. 1, 4385 (2018)

    Google Scholar 

  35. N. Shahzad, F. Chen, L. He, W. Li, H. Wang, J. Power Sources 294, 609 (2015)

    ADS  Google Scholar 

  36. Y. Jin, F. Chen, Y. Lei, X. Wu, ChemCatChem 7, 2377 (2015)

    Google Scholar 

  37. R. Ferrando, A. Fortunelli, R. Johnston, Phys. Chem. Chem. Phys. 10, 640 (2008)

    Google Scholar 

  38. H. Arslan, A. Garip, R. Johnston, Phys. Chem. Chem. Phys. 17, 28311 (2015)

    Google Scholar 

  39. X. Wu, Y. Wu, X. Kai, G. Wu, Y. Chen, Chem. Phys. Chem. Phys. 390, 36 (2011)

    ADS  Google Scholar 

  40. S. Núñez, R.L. Johnston, J. Phys. Chem. C 114, 13255 (2010)

    Google Scholar 

  41. J. Guerrero-Jordan, J.L. Cabellos, R.L. Johnston, A. Posada-Amarillas, Eur. Phys. J. B 91, 123 (2018)

    ADS  Google Scholar 

  42. B. Hammer, L. Hansen, J. Nørskov, Phys. Rev. B 59, 7413 (1999)

    ADS  Google Scholar 

  43. L. Paz-Borbon, R. Johnston, G. Barcaro, A. Fortunelli, J. Chem. Phys. 128, 134517 (2008)

    ADS  Google Scholar 

  44. A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. Curley, L. Lloyd, G. Tarbuck, R. Johnston, J. Chem. Phys. 122, 194308 (2005)

    ADS  Google Scholar 

  45. T. Fan, I. Demiroglu, H. Hussein, T. Liu, R. Johnston, Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/C7CP04811D

    Article  Google Scholar 

  46. K. Reuter, M. Scheffler, Appl. Phys. A 78, 793 (2003)

    ADS  Google Scholar 

  47. R. Ferrando, J. Jellinek, R. Johnston, Chem. Rev. 108, 845 (2008)

    Google Scholar 

  48. L.-L. Wang, D. Johnson, J. Am. Chem. Soc. 131, 14023 (2009)

    Google Scholar 

  49. R. Toyoshima, K. Amemiya, K. Mase, H. Kondoh, J. Phys. Chem. Lett. 11, 9249 (2020)

    Google Scholar 

  50. G.R. Wallwork, Rep. Prog. Phys. 39, 401 (1976)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51874243, 51271148 and 50971100), the Research Fund of State Key Laboratory of Solidification Processing (NPU), China (Grant No. 2020-TS-02), the Project of Transformation of Scientific and Technological Achievements of NWPU (Grant No. 19-2017) and the Open Fund of State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology Grant No. 2018-KF-18).

Author information

Authors and Affiliations

Authors

Contributions

BK was involved in data curation, formal analysis, investigation, methodology and writing the original draft. FC took part in conceptualization, supervision, reviewing and editing. ZL, WB, LG and TG have contributed to formal analysis, investigation and methodology. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fuyi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, B., Chen, F., Li, Z. et al. Surface phase stability of surface segregated AgPd and AgCu nanoalloys in an oxygen atmosphere. Appl. Phys. A 127, 406 (2021). https://doi.org/10.1007/s00339-021-04569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04569-8

Keywords

Navigation