Skip to main content
Log in

Design optimization of high-frequency AlGaN/GaN HEMT on BGO substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a T gate head AlGaN/GaN high-electron-mobility transistor (HEMT) on BGO substrate is proposed and optimization is done for channel length, gate length and gate position. The dc and ac characteristics of the devices under consideration are analysed using Silvaco TCAD software. The threshold voltage and transconductance of the proposed HEMT are extracted from the DC characteristics. The unity gain cut-off frequency (fT) and maximum oscillation frequency (fmax) are analysed for comparing the radio frequency characteristics. The T gate AlGaN/GaN HEMT on BGO substrate with channel length of 200 nm, gate length of 20 nm, gate source distance of 100 nm and gate drain distance of 80 nm exhibits optimum values for fT and fmax of 265 GHz and 900 GHz. The RF performance of the optimized device is compared with other related recent technologies and found that the proposed device is superior among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the research work.

References

  1. T. Zine-eddine, H. Zahra, M. Zitouni, Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications. J. Sci. Adv. Mater. Devices 4(1), 180–187 (2019). https://doi.org/10.1016/j.jsamd.2019.01.001 (ISSN 2468-2179)

    Article  Google Scholar 

  2. R. Chu et al., 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on—resistance. IEEE Electron. Device Lett. 32(5), 632–634 (2011). https://doi.org/10.1109/LED.2011.2118190

    Article  ADS  Google Scholar 

  3. E. Bahat-Treidel, O. Hilt, F. Brunner, V. Sidorov, J. Würfl, G. Tränkle, AlGaN/GaN/AlGaN DH-HEMTs breakdown voltage enhancement using multiple grating field plates (MGFPs). IEEE Trans. Electron Devices 57(6), 1208–1216 (2010). https://doi.org/10.1109/TED.2010.2045705

    Article  ADS  Google Scholar 

  4. A.S. Augustine Fletcher, D. Nirmal, J. Ajayan, L. Arivazhagan, Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. AEU Int. J. Electron. Commun. 99, 325–330 (2019). https://doi.org/10.1016/j.aeue.2018.12.006 (ISSN 1434-8411)

    Article  Google Scholar 

  5. D. Cucak et al., in Physical Modeling and Optimization of a GaN HEMT Design with a Field Plate Structure for High Frequency Application, 2014 IEEE Energy Conversion Congress and Exposition (ECCE) (Pittsburgh, PA, USA, 2014), pp. 2857–2864. https://doi.org/10.1109/ECCE.2014.6953786

  6. S. Adak, A. Sarkar, S. Swain, H. Pardeshi, S.K. Pati, C.K. Sarkar, High performance AlInN/AlN/GaN p-GaN back barrier gate-recessed enhancement-mode HEMT. Superlattices Microstruct. 75, 347–357 (2014). https://doi.org/10.1016/j.spmi.2014.07.036 (ISSN 0749-6036)

    Article  ADS  Google Scholar 

  7. Z. Wang, J. Cao, R. Sun, F. Wang, Y. Yao, Numerical investigation on AlGaN/GaN short channel HEMT with AlGaN/InGaN/AlGaN quantum well plate. Superlattices Microstruct 120, 753–758 (2018). https://doi.org/10.1016/j.spmi.2018.06.045 (ISSN 0749-6036)

    Article  ADS  Google Scholar 

  8. Z. Wang, W. Chen, F. Wang, J. Cao, R. Sun, K. Ren, Y. Luo, S. Guo, Z. Wang, X. Jin, L. Yang, Simulation study on AlGaN/GaN diode with Γ-shaped anode for ultra-low turn-on voltage. Superlattices Microstruct. 117, 330–335 (2018). https://doi.org/10.1016/j.spmi.2018.03.063 (ISSN 0749-6036)

    Article  ADS  Google Scholar 

  9. N. Herbecq, I. Roch-Jeune, A. Linge, M. Zegaoui, P.-O. Jeannin, N. Rouger, F. Medjdoub, Above 2000 V breakdown voltage at 600 K GaN-on-silicon high electron mobility transistors. Phys. Status Solidi A 213, 873–877 (2016). https://doi.org/10.1002/pssa.201532572

    Article  ADS  Google Scholar 

  10. M. Mohapatra, T. De, A.K. Panda, in Performance Analysis of AlGaN/GaN based HEMT for Different Gate Structure (Normal gate and T-shaped gate), 2017 Devices for Integrated Circuit (DevIC) (Kalyani, India, 2017), pp. 144–148. https://doi.org/10.1109/DEVIC.2017.8073924.

  11. A.S.A. Fletcher, D. Nirmal, J. Ajayan et al., An intensive study on assorted substrates suitable for high JFOM AlGaN/GaN HEMT. SILICON (2020). https://doi.org/10.1007/s12633-020-00549-4

    Article  Google Scholar 

  12. Y. Lu, J.H. Warner, Synthesis and applications of wide bandgap 2D layered semiconductors reaching the green and blue wavelengths. ACS Appl. Electron. Mater. (2020). https://doi.org/10.1021/acsaelm.0c00105

    Article  Google Scholar 

  13. U. Bhandari, B.A. Ayirizia, Y. Malozovsky, L. Franklin, D. Bagayoko, First principle investigation of electronic, transport, and bulk properties of zinc-blende magnesium sulfide. Electronics 9(11), 1791 (2020). https://doi.org/10.3390/electronics9111791

    Article  Google Scholar 

  14. S. Zhu, H. Jia, T. Li, Y. Tong, Y. Liang, X. Wang, T. Zeng, Y. Yang, Novel high-energy-efficiency AlGaN/GaN HEMT with high gate and multi-recessed buffer. Micromachines 10(7), 444 (2019). https://doi.org/10.3390/mi10070444

    Article  Google Scholar 

  15. R. Singh, T.R. Lenka, R.T. Velpula, B.H. Quoc Thang, H.P.T. Nguyen, in Investigation of E-Mode Beta-Gallium Oxide MOSFET for Emerging Nanoelectronics, 2019 IEEE 14th Nanotechnology Materials and Devices Conference (NMDC) (Stockholm, Sweden, 2019), pp. 1–5. https://doi.org/10.1109/NMDC47361.2019.9084013

  16. E.G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, T. Ujiie, Epitaxial relationship between wurtzite GaN and β-Ga2O3. Appl. Phys. Lett. 90, 234102 (2007). https://doi.org/10.1063/1.2745645

    Article  ADS  Google Scholar 

  17. T. Oshima, Y. Kato, N. Kawano et al., Carrier confinement observed at modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterojunction interface. Appl. Phys. Express. 10(3), 035701 (2017)

    Article  ADS  Google Scholar 

  18. K.D. Chabak et al., Lateral β-Ga2O3 field effect transistors. Semicond. Sci. Technol. 35, 013002 (2020). https://doi.org/10.1088/1361-6641/ab55fe

    Article  ADS  Google Scholar 

  19. K. Ghosh, U. Singisetti, Ab initio velocity-field curves in monoclinic β-Ga2O3. J. Appl. Phys. 122, 035702 (2017)

    Article  ADS  Google Scholar 

  20. I. Ben-Yaacov, Y.K. Seck, U.K. Mishra, S.P. DenBaars, AlGaN/GaN current aperture vertical electron transistors with regrown channels. J. Appl. Phys. 95, 2073–20788 (2004). https://doi.org/10.1063/1.1641520

    Article  ADS  Google Scholar 

  21. D. Nirmal, L. Arivazhagan, A.S. Augustine Fletcher, J. Ajayan, P. Prajoon, Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application. Superlattices Microstruct. 113, 810–820 (2018). https://doi.org/10.1016/j.spmi.2017.12.027 (ISSN 0749-6036)

    Article  ADS  Google Scholar 

  22. S. Karmalkar, U.K. Mishra, Very high voltage AlGaN/GaN high electron mobility transistors using a field plate deposited on a stepped insulator. Solid-State Electron 45(9), 1645–1652 (2001). https://doi.org/10.1016/S0038-101(01)00158-7 (ISSN 0038-1101)

    Article  ADS  Google Scholar 

  23. C.-Y. Chiang, H.-T. Hsu, E.Y. Chang, Effect of field plate on the RF performance of AlGaN/GaN HEMT devices. Int. Conf. Sol. Stat. Dev. Mat. Sci. Procedia 25, 86–91 (2012)

    Google Scholar 

  24. L. Arivazhagan, D. Nirmal, D. Godfrey, J. Ajayan, P. Prajoon, A.S. Augustine Fletcher, A. Amir Anton Jone, J.S. Raj Kumar, Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications. AEU Int. J. Electron. Commun. 108, 189–194 (2019). https://doi.org/10.1016/j.aeue.2019.06.015 (ISSN 1434-8411)

    Article  Google Scholar 

  25. B.M. Green, K.K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy, L.F. Eastman, The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 21(6), 268–270 (2000). https://doi.org/10.1109/55.843146

    Article  ADS  Google Scholar 

  26. R. Singh, T.R. Lenka, R.T. Velpula, B. Jain, H.Q.T. Bui, H.P.T. Nguyen, A novel β-Ga2O3 HEMT with fT of 166 GHz and X-band POUT of 2.91 W/mm. Int. J. Numer. Model. El. 34, e2794 (2021). https://doi.org/10.1002/jnm.2794

    Article  Google Scholar 

  27. G. Dechun, Q. Kankan, C. Junfeng, L. Xiaobin, Y. Chao, in A simulation about the influence of the gate-source-drain distance on the AlGaN/GaN HEMT performance at Ka-band, 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (Nanjing, China, 2012), pp. 1–4. https://doi.org/10.1109/IMWS2.2012.6338225.

  28. K.E. Kaharudin, F. Salehuddin, A. Zain, A.F. Roslan, Effect of channel length variation on analog and RF performance of junctionless double gate vertical MOSFET. J. Eng. Sci. Technol. 14(4), 2410–2430 (2019). (ISSN 1823-4690)

    Google Scholar 

  29. S. Russo, A. Di Carlo, Influence of the source-gate distance on the AlGaN/GaN HEMT performance. IEEE Trans. Electron Devices 54(5), 1071–1075 (2007). https://doi.org/10.1109/TED.2007.894614

    Article  ADS  Google Scholar 

  30. J.W. Johnson, A.G. Baca, R.D. Briggs, R.J. Shul, J.R. Wendt, C. Monier, F. Ren, S.J. Pearton, A.M. Dabiran, A.M. Wowchack, C.J. Polley, P.P. Chow, Effect of gate length on DC performance of AlGaN/GaN HEMTs grown by MBE. Solid-State Electron. 45(12), 1979–1985 (2001). https://doi.org/10.1016/S0038-1101(01)00255-6 (ISSN 0038-1101)

    Article  ADS  Google Scholar 

  31. S.Y. Liao, C.C. Lu, T. Chang, C.F. Huang, C.H. Cheng, L.B. Chang, Gate length scaling effect on high-electron mobility transistors devices using AlGaN/GaN and AlInN/AlN/GaN heterostructures. J. Nanosci. Nanotechnol. 14, 6243–6246 (2014). https://doi.org/10.1166/jnn.2014.8726

    Article  Google Scholar 

  32. J.-W. Lee, V. Kumar, I. Adesida, High-power-density 0.25 μm gatelength AlGaN/GaN high-electron-mobility transistors on semi-insulating 6H–SiC substrates. Jpn. J. Appl. Phys. 45(1A), 13–17 (2006). https://doi.org/10.1143/JJAP.45.13

    Article  ADS  Google Scholar 

  33. B.P. Downey, D.J. Meyer, D.S. Katzer, J.A. Roussos, M. Pan, X. Gao, SiNx /InAlN/AlN/GaN MIS-HEMTs with 10.8 THz ⋅ V Johnson figure of merit. IEEE Electron Device Lett. 35(5), 527–529 (2014). https://doi.org/10.1109/LED.2014.2313023

    Article  ADS  Google Scholar 

  34. R. Kumud, A. Subramaniam, G.I. Ng, V. Sahmuganathan, High Johnson’s figure of merit (8.32 THz ⋅ V) in 0.15-μm conventional T-gate AlGaN/GaN HEMTs on silicon. Appl. Phys. Express. 7, 41–44 (2014)

    Google Scholar 

  35. C. Tsou, C. Lin, Y. Lian, S.S.H. Hsu, 101-GHz InAlN/GaN HEMTs on silicon with high Johnson’s figure-of-merit. IEEE Trans. Electron Devices 62(8), 2675–2678 (2015). https://doi.org/10.1109/TED.2015.2439699

    Article  ADS  Google Scholar 

  36. L. Yang et al., Enhanced gm and fT with high Johnson’s figure-of-merit in thin barrier AlGaN/GaN HEMTs by TiN-based source contact ledge. IEEE Electron. Device Lett. 38(11), 1563–1566 (2017). https://doi.org/10.1109/LED.2017.2757523

    Article  ADS  Google Scholar 

  37. A. Fletcher, D. Nirmal, J. Ajayan, L. Arivazhagan, Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. Int. J. Electron. Commun. 99, 325–330 (2019)

    Article  Google Scholar 

  38. A.S. Augustine Fletcher, D. Nirmal, L. Arivazhagan, J. Ajayan, A. Varghese, Enhancement of Johnson figure of merit in III–V HEMT combined with discrete field plate and AlGaN blocking layer. Int. J. RF Microw. Comput. Aided Eng. 30, e22040 (2020). https://doi.org/10.1002/mmce.22040

    Article  Google Scholar 

  39. Y. Tang et al., Ultrahigh-speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz. IEEE Electron. Device Lett. 36(6), 549–551 (2015). https://doi.org/10.1109/LED.2015.2421311

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to convey their sincere thanks to Department of Avionics, Indian Institute for Space Science & Technology, Trivandrum, for providing VLSI & Micro systems Laboratory to complete the work.

Funding

The authors did not receive any financial support from any organization for the submitted research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design. Data collection, material preparation and analysis were performed by Mrs. Anju S, Dr. V Suresh Babu, and Dr. Geenu Paul. The manuscript was written by Mrs. Anju S and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Anju.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare that are relevant to the content of the article. The submitted work is not published elsewhere in any form or language (partial or in full).

Consent to participate

Consent to participate is not applicable for this work.

Consent for publication

All the images are entirely unidentifiable, there are no details on individuals reported within the manuscript, and consent of publication of images is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anju, S., Babu, V.S. & Paul, G. Design optimization of high-frequency AlGaN/GaN HEMT on BGO substrates. Appl. Phys. A 127, 405 (2021). https://doi.org/10.1007/s00339-021-04550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04550-5

Keywords

Navigation