Skip to main content
Log in

Study of the electrical properties of < 100 > Cz p-type solar-grade silicon wafers against the high-temperature processes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate the bulk stability of the solar-grade silicon versus the temperature processing, as well as the surface passivation versus the chemical oxidation. To this end, the quasi-steady-state photo-conductance (QSSPC) measurements showed degradation in minority carrier lifetime (τeff) after high-temperature processing that involves instability of the silicon wafers face to the thermal processes. Thereby, the bulk investigations indicated the formation of iron–boron (FeB) pairs. These latter are known to be active recombination centers. The FeB pairs formation was highlighted by a study based on sample illumination technique and the crossover point (∆ncop) identification in the injection-dependent lifetime curves. The surface passivation using both chemical and thermal oxide was used aiming to study the surface properties, in the presence of a thin layer of SiO2. The investigations using the hot probe technique revealed the appearance of an inversion layer, leading to type switching of the semiconductor at the surface, going from p- to n-type. This n-layer induces a high surface recombination velocity (SRV), leading to poor surface passivation. This is caused by the diffusion of the phosphorus toward the silicon surface, induced by the presence of a thin layer of SiO2 in the p-type solar-grade wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Hoffmann, K. Petter, J. Djordjevic-Reiss, E. Enebakk, J.D. Håkedal, R. Tronstad, T. Vlasenko, I. Buchovskaja, S. Beringov, M. Bauer, 23rd EUPVSEC, Valencia. Spain (2008). https://doi.org/10.4229/23rdEUPVSEC2008-2BO.3.3

    Article  Google Scholar 

  2. D. Sarti, R. Einhaus, Sol. Ener. Mater. Sol. Cells. (2002). https://doi.org/10.1016/S0927-0248(01)00147-7

    Article  Google Scholar 

  3. S. Rein, J. Geilker, W. Kwapil, G. Emanuel, I. Reis, A.K. Soiland, S. Grandum, R. Tronstad, 25th EUPVSEC and Exhibition, Valencia. Spain (2010). https://doi.org/10.4229/25thEUPVSEC2010-2BO.1.2

    Article  Google Scholar 

  4. T. Bartel, K. Lauer, M. Heuer, M. Kaes, M. Walerysiak, F. Gibaja, J. Lich, J. Bauerd, F. Kirscht, Energy Procedia 27, 45–52 (2012)

    Article  Google Scholar 

  5. S. Pizzini, Sol. Ener. Mater. Sol. Cells (2010). https://doi.org/10.1016/j.solmat.2010.01.016

    Article  Google Scholar 

  6. D. MacDonald, A. Liu, A. Cuevas, B. Lim, J. Schmidt, Phys Status Solidi A: Appl. Mater. Sci. (2011). https://doi.org/10.1002/pssa.201000146

    Article  Google Scholar 

  7. S. Rein, W. Kwapil, J. Geilker, G. Emanuel, M. Spitz, I. Reis, A. Weil, D. Biro, A.K. Soiland, E. Enebakk, R. Tronstad, 24th EUPVSEC, Hamburg. Germany (2009). https://doi.org/10.4229/24thEUPVSEC2009-2DO.2.3

    Article  Google Scholar 

  8. J. Libal, S. Novaglia, M. Acciarri, S. Binetti, R. Petres, J. Arumughan, R. Kopecek, A. Prokopenko, J. App. Phys. (2008). https://doi.org/10.1063/1.3021300

    Article  Google Scholar 

  9. S. Rein, S.W. Glunz, Appl. Phys. Lett. 82(7), 1054–1056 (2003)

    Article  ADS  Google Scholar 

  10. K. Bothe, J. Schmidt, R. Hezel, 3rd WCPEC, Osaka. Japan (2003). https://doi.org/10.1109/WCPEC.2003.1306099

    Article  Google Scholar 

  11. F. Rougieux, D. Macdonald, K.R. Mcintosh, A. Cuevas, 24th EUPVSEC, Hamburg. Germany (2009). https://doi.org/10.4229/24thEUPVSEC2009-2CO.3.6

    Article  Google Scholar 

  12. A. Cuevas, IEEE Conference on Optoelectronic and Microelectronic Materials and Devices (2002). https://doi.org/10.1109/COMMAD.2008.4802135

    Article  Google Scholar 

  13. D. Macdonald, L. Geerligs, A. Azzizi, J. Appl. Phys. (2004). https://doi.org/10.1063/1.1637136

    Article  Google Scholar 

  14. H.A. Kobayashi suha, O. Maida, M. Takahashi, H. Iwasa, J. Appl. Phys. (2003). https://doi.org/10.1063/1.1621720

    Article  Google Scholar 

  15. N. Khelifati, D. Bouhafs, A. Mebarek-Azzem, S.E.-H. Abaidia, B. Palahouane, Y. Kouhlane, Acta Phys. Pol A (2016). https://doi.org/10.12693/APhysPolA.130.188

    Article  Google Scholar 

  16. J. W. Chen, L. Zhao, H. Diao, B. Yan, S. Zhou, Y. Tang and W. Wang, Adv. Mat. Res. (2013). https://doi.org/10.4028/www.scientific.net/AMR.652-654.901

  17. M. Maoudj, D. Bouhafs, N. Bourouba, N. Khelifati, A. El Amrani, R. Boufnik, A. Hamida-Ferhat, Acta Phys. Pol A (2017). https://doi.org/10.12693/APhysPolA.132.725

    Article  Google Scholar 

  18. X. Zhu, X. Yu, P. Chen, Y. Liu, J. Vanhellemont, D. Yang, Int. j. photoenergy. (2015). https://doi.org/10.1155/2015/154574

    Article  Google Scholar 

  19. D. Macdonald, T. Roth, P.N.K. Deenapanray, Appl. Phys. Lett. 89, 142107 (2006)

    Article  ADS  Google Scholar 

  20. C. Möller, A. Laades, K. Lauer, Solid State Phenom. 205, 265 (2014)

    Google Scholar 

  21. D. Macdonald, A. Cuevas, J. Wong-Leung, J. App. Phys. 89, 12 (2001)

    Google Scholar 

  22. W.M. Bullis, H.R. Huff, J. Electrochem. Soc. 143, 1399 (1996)

    Article  ADS  Google Scholar 

  23. M.A. Green, J. Appl. Phys. 67, 2944 (1990)

    Article  ADS  Google Scholar 

  24. S. Rein, Lifetime spectroscopy, A Method of Defect Characterization in Silicon for Photovoltaic Applications 1st edn. (Springer 2005), pp. 50–53.

  25. A.B. Sproul, J. Appl Phys. (1994). https://doi.org/10.1063/1.357521

    Article  Google Scholar 

  26. A.S. Grove, O. Leistiko, C.T. Sah, J. Appl. Phys. (1964). https://doi.org/10.1063/1.1713825

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Directorate General for Scientific Research and Technological Development (DGRSDT–Algerian Ministry of Higher Education and Scientific Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Maoudj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maoudj, M., Bouhafs, D., Bourouba, N.E. et al. Study of the electrical properties of < 100 > Cz p-type solar-grade silicon wafers against the high-temperature processes. Appl. Phys. A 127, 407 (2021). https://doi.org/10.1007/s00339-021-04578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04578-7

Keywords

Navigation