Skip to main content

Advertisement

Log in

A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The current study develops a 3D constitutive model for photo-thermal sensitive hydrogels based on free energy decomposition. The hydrogel under study is PNIPAM network with copper chlorophyllin nanoparticle agents attached to the network. The effect of light intensity is considered as a rise in temperature since chlorophyllin nanoparticle agents absorb light irradiation and convert it to heat. Moreover, it is necessary to consider the effect of dissociation of these agents on the hydrogel’s free energy function; therefore, a term is added to the free energy function. After introducing the model, some problems, including the free swelling and uniaxial loading problems, are studied, and the obtained results are compared with experimental data to validate the model. The results of the model are in good agreement with experiments, which confirms the validity of the model. Next, to develop a numerical tool to study problems with complicated boundary conditions, the model is implemented in ABAQUS by developing a user-defined UHYPER subroutine, and several practical problems are studied. For example, the deformation of a bilayer made of a sensitive hydrogel attached to a neutral elastomer and the behavior of a self-folding structure is investigated with respect to temperature and light intensity changes. Thereafter, the problem of coexistent phases in a rod due to the light irradiation is investigated. The obtained results confirm the performance of the presented model for use in complicated boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cai, S., Suo, Z.: Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J. Mech. Phys. Solids 59(11), 2259–2278 (2011)

    Article  Google Scholar 

  2. Marcombe, R., Cai, S., Hong, W.: A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6, 784–793 (2010)

    Article  Google Scholar 

  3. Wallmersperger, T., Kröplin, B., Gülch, R.W.: Coupled chemo-electro-mechanical formulation for ionic polymer gels––numerical and experimental investigations. Mech. Mater. 36(5–6), 411–420 (2004)

    Article  Google Scholar 

  4. Hamzavi, N., Drozdov, A.D., Gu, Y., Birgersson, E.: Modeling equilibrium swelling of a dual pH-and temperature-responsive core/shell hydrogel. Int. J. Appl. Mech. 8(03), 1650039 (2016)

    Article  Google Scholar 

  5. Hong, W., Zhao, X., Suo, Z.: Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids 58(4), 558–577 (2010)

    Article  MathSciNet  Google Scholar 

  6. Zheng, S., Liu, Z.: Constitutive model of salt concentration-sensitive hydrogel. Mech. Mater. 136, 103092 (2019)

    Article  Google Scholar 

  7. Drozdov, A., Christiansen, J.D.: The effects of ph and ionic strength of swelling of cationic gels. Int. J. Appl. Mech. 8(05), 1650059 (2016)

    Article  Google Scholar 

  8. Li, H.: Kinetics of smart hydrogels responding to electric field: a transient deformation analysis. Int. J. Solids Struct. 46(6), 1326–1333 (2009)

    Article  Google Scholar 

  9. Suzuki, A.: Phase transition in gels of sub-millimeter size induced by interaction with stimuli. In: Responsive gels: volume transitions II, pp 199–240 (1993).

  10. Yang, C., Wang, W., Yao, C., Xie, R., Ju, X.J., Liu, Z., Chu, L.Y.: Hydrogel walkers with electro-driven motility for cargo transport. Sci. Rep. 5, 13622 (2015). https://doi.org/10.1038/srep13622

    Article  Google Scholar 

  11. Ionov, L.: Hydrogel-based actuators: possibilities and limitations. Mater. Today 17(10), 494–503 (2014)

    Article  Google Scholar 

  12. Dong, L., Agarwal, A.K., Beebe, D.J., Jiang, H.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442(7102), 551–554 (2006). https://doi.org/10.1038/nature05024

    Article  Google Scholar 

  13. Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.-H.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778), 588 (2000)

    Article  Google Scholar 

  14. Mazaheri, H., Baghani, M., Naghdabadi, R., Sohrabpour, S.: Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study. Smart Materials and Structures 24(4) (2015). Doi:https://doi.org/10.1088/0964-1726/24/4/045004

  15. Geryak, R., Tsukruk, V.V.: Reconfigurable and actuating structures from soft materials. Soft Matter 10(9), 1246–1263 (2014). https://doi.org/10.1039/c3sm51768c

    Article  Google Scholar 

  16. Banerjee, H., Suhail, M., Ren, H.: Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges. Biomimetics (Basel) 3(3) (2018). doi:https://doi.org/10.3390/biomimetics3030015

  17. Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18(11), 1345–1360 (2006). https://doi.org/10.1002/adma.200501612

    Article  Google Scholar 

  18. Chan, G., Mooney, D.J.: New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol. 26(7), 382–392 (2008). https://doi.org/10.1016/j.tibtech.2008.03.011

    Article  Google Scholar 

  19. Sershen, S., Westcott, S., Halas, N., West, J.: Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51(3), 293–298 (2000)

    Article  Google Scholar 

  20. Lo, C.-W., Zhu, D., Jiang, H.: An infrared-light responsive graphene-oxide incorporated poly (N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 7(12), 5604–5609 (2011)

    Article  Google Scholar 

  21. Satoh, T., Sumaru, K., Takagi, T., Kanamori, T.: Fast-reversible light-driven hydrogels consisting of spirobenzopyran-functionalized poly (N-isopropylacrylamide). Soft Matter 7(18), 8030–8034 (2011)

    Article  Google Scholar 

  22. Szilágyi, A., Sumaru, K., Sugiura, S., Takagi, T., Shinbo, T., Zrínyi, M., Kanamori, T.: Rewritable microrelief formation on photoresponsive hydrogel layers. Chem. Mater. 19(11), 2730–2732 (2007)

    Article  Google Scholar 

  23. Yoon, J., Bian, P., Kim, J., McCarthy, T.J., Hayward, R.C.: Local switching of chemical patterns through light-triggered unfolding of creased hydrogel surfaces. Angew. Chem. Int. Ed. 51(29), 7146–7149 (2012)

    Article  Google Scholar 

  24. Gorelikov, I., Field, L.M., Kumacheva, E.: Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc. 126(49), 15938–15939 (2004)

    Article  Google Scholar 

  25. Suzuki, A., Tanaka, T.: Phase transition in polymer gels induced by visible light. Nature 346(6282), 345–347 (1990)

    Article  Google Scholar 

  26. Dehghany, M., Zhang, H., Naghdabadi, R., Hu, Y.: A thermodynamically-consistent large deformation theory coupling photo-chemical reaction and electrochemistry for light-responsive gels. J. Mech. Phys. Solids 116, 239–266 (2018). https://doi.org/10.1016/j.jmps.2018.03.018

    Article  MathSciNet  Google Scholar 

  27. Gibbs, J.W.: The scientific papers of J. Willard Gibbs, vol. 1. Longmans, Green and Company, (1906)

  28. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  29. Tanaka, T., Fillmore, D.J.: Kinetics of swelling of gels. J. Chem. Phys. 70(3), 1214–1218 (1979)

    Article  Google Scholar 

  30. Hong, W., Zhao, X., Zhou, J., Suo, Z.: A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56(5), 1779–1793 (2008)

    Article  Google Scholar 

  31. Flory, P.J., Rehner, J., Jr.: Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 11(11), 512–520 (1943)

    Article  Google Scholar 

  32. Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10(1), 51–61 (1942)

    Article  Google Scholar 

  33. Huggins, M.L.: Solutions of long chain compounds. J. Chem. Phys. 9(5), 440–440 (1941)

    Article  Google Scholar 

  34. Chester, S.A., Anand, L.: A coupled theory of fluid permeation and large deformations for elastomeric materials. J. Mech. Phys. Solids 58(11), 1879–1906 (2010)

    Article  MathSciNet  Google Scholar 

  35. Duda, F.P., Souza, A.C., Fried, E.: A theory for species migration in a finitely strained solid with application to polymer network swelling. J. Mech. Phys. Solids 58(4), 515–529 (2010)

    Article  MathSciNet  Google Scholar 

  36. Liu, Z., Toh, W., Ng, T.Y.: Advances in mechanics of soft materials: a review of large deformation behavior of hydrogels. Int. J. Appl. Mech. 7(05), 1530001 (2015)

    Article  Google Scholar 

  37. Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J. Mech. Phys. Solids 59(10), 1978–2006 (2011)

    Article  MathSciNet  Google Scholar 

  38. Mazaheri, H., Baghani, M., Naghdabadi, R.: Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels. J. Intell. Mater. Syst. Struct. 27(3), 324–336 (2015). https://doi.org/10.1177/1045389x15571381

    Article  Google Scholar 

  39. Afroze, F., Nies, E., Berghmans, H.: Phase transitions in the system poly (N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J. Mol. Struct. 554(1), 55–68 (2000)

    Article  Google Scholar 

  40. De, S.K., Aluru, N.R.: A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mech. Mater. 36(5–6), 395–410 (2004)

    Article  Google Scholar 

  41. Mazaheri, H., Baghani, M., Naghdabadi, R., Sohrabpour, S.: Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling. Smart Mater. Struct. 25(8), 085034 (2016)

    Article  Google Scholar 

  42. Yu, Y., Landis, C.M., Huang, R.: Salt-induced swelling and volume phase transition of polyelectrolyte gels. J. Appl. Mech. 84(5), 051005 (2017)

    Article  Google Scholar 

  43. Huang, R., Zheng, S., Liu, Z., Ng, T.Y.: Recent advances of the constitutive models of smart materials-hydrogels and shape memory polymers. Int. J. Appl. Mech. 12, 2050014 (2020)

    Article  Google Scholar 

  44. Kuksenok, O., Balazs, A.C.: Modeling the photoinduced reconfiguration and directed motion of polymer gels. Adv. Func. Mater. 23(36), 4601–4610 (2013)

    Article  Google Scholar 

  45. Toh, W., Ng, T.Y., Hu, J., Liu, Z.: Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels. Int. J. Solids Struct. 51(25–26), 4440–4451 (2014). https://doi.org/10.1016/j.ijsolstr.2014.09.014

    Article  Google Scholar 

  46. Drozdov, A.D., Declaville Christiansen, J.: Modeling the effects of pH and ionic strength on swelling of polyelectrolyte gels. J. Chem. Phys. 142(11):114904 (2015). https://doi.org/10.1063/1.4914924

    Article  Google Scholar 

  47. Mazaheri, H.: Study of swelling behavior of temperature sensitive hydrogels considering inextensibility of network. Sci. Iranica 26(2), 887–896 (2019)

    Google Scholar 

  48. Flory, P.J., Rehner, J., Jr.: Statistical mechanics of cross-linked polymer networks II Swelling. J. Chem. Phys. 11(11), 521–526 (1943)

    Article  Google Scholar 

  49. Huggins, M.L.: Some properties of solutions of long-chain compounds. J. Phys. Chem. 46(1), 151–158 (1942)

    Article  Google Scholar 

  50. Drozdov, A.D., Declaville Christiansen, J.: (2015) Swelling of p H-sensitive hydrogels. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 91(2): 022305. Doi:https://doi.org/10.1103/PhysRevE.91.022305

  51. Hong, W., Liu, Z., Suo, Z.: Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int. J. Solids Struct. 46(17), 3282–3289 (2009)

    Article  Google Scholar 

  52. Ding, Z., Toh, W., Hu, J., Liu, Z., Ng, T.Y.: A simplified coupled thermo-mechanical model for the transient analysis of temperature-sensitive hydrogels. Mech. Mater. 97, 212–227 (2016)

    Article  Google Scholar 

  53. Cheng, Y., Ren, K., Yang, D., Wei, J.: Bilayer-type fluorescence hydrogels with intelligent response serve as temperature/pH driven soft actuators. Sens. Actuators B Chem. 255, 3117–3126 (2018). https://doi.org/10.1016/j.snb.2017.09.137

    Article  Google Scholar 

  54. Le, X., Lu, W., Zhang, J., Chen, T.: Recent Progress in Biomimetic Anisotropic Hydrogel Actuators. Adv Sci (Weinh) 6(5), 1801584 (2019). https://doi.org/10.1002/advs.201801584

    Article  Google Scholar 

  55. Abdolahi, J., Baghani, M., Arbabi, N., Mazaheri, H.: Analytical and numerical analysis of swelling-induced large bending of thermally-activated hydrogel bilayers. Int. J. Solids Struct. 99, 1–11 (2016). https://doi.org/10.1016/j.ijsolstr.2016.08.017

    Article  Google Scholar 

  56. Arbabi, N., Baghani, M., Abdolahi, J., Mazaheri, H., Mashhadi, M.M.: Finite bending of bilayer pH-responsive hydrogels: A novel analytic method and finite element analysis. Compos. B Eng. 110, 116–123 (2017)

    Article  Google Scholar 

  57. Fernandes, R., Gracias, D.H.: Self-folding polymeric containers for encapsulation and delivery of drugs. Adv. Drug Deliv. Rev. 64(14), 1579–1589 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The corresponding author is grateful for the research support of the Iran's National Elites Foundation (INEF).

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazaheri, H., Namdar, A.H. & Ghasemkhani, A. A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels. Acta Mech 232, 2955–2972 (2021). https://doi.org/10.1007/s00707-021-02991-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02991-w

Navigation