Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle

Abstract

Strong metal–support interactions (SMSIs) are crucial for the preparation of supported metal catalysts. A prevailing view is that the redox feature of the metal oxide support is the driving force behind SMSI construction. Herein we demonstrate CO2-induced SMSIs between irreducible oxide MgO and noble gold nanoparticles, presenting electronic and geometric features that are similar to those of classical SMSIs. The key to these interactions is activating the oxide surface by a reversible reaction, MgO + CO2 MgCO3, which leads to migration of the support onto the gold nanoparticles to form thin overlayers. The overlayer is permeable to the reactant molecules, stable under the oxidation conditions and even water tolerant, resulting in sinter-resistant gold nanoparticle catalysts. This investigation provides an approach for the rational design and optimization of supported metal catalysts based on irreducible oxides, and deepens our understanding of the mechanism of SMSI formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TEM characterization of Au/MgO-Cx.
Fig. 2: Electronic property and catalyst stability.
Fig. 3: Mechanism study.
Fig. 4: Scheme showing CO2-induced SMSIs on Au/MgO.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Wei, X. et al. Geometrical structure of the gold–iron(iii) oxide interfacial perimeter for CO oxidation. Angew. Chem. Int. Ed. 57, 11289–11293 (2018).

    Article  CAS  Google Scholar 

  3. Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article  CAS  Google Scholar 

  4. Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018).

    Article  CAS  Google Scholar 

  6. Komanoya, T., Kinemura, T., Kita, Y., Kamata, K. & Hara, M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc. 139, 11493–11499 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y., Furukawa, S. & Yan, N. Identification of an active NiCu catalyst for nitrile synthesis from alcohol. ACS Catal. 9, 6681–6691 (2019).

    Article  Google Scholar 

  8. Cargnello, M. et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337, 713–717 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, L. et al. Activity and selectivity in nitroarene hydrogenation over Au nanoparticles on the edge/corner of anatase. ACS Catal. 6, 4110–4116 (2016).

    Article  CAS  Google Scholar 

  10. Yu, X. et al. Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde. J. Phys. Chem. C. 116, 851–860 (2012).

    Article  CAS  Google Scholar 

  11. Ta, N. et al. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 134, 20585–20588 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, J. et al. Manipulating atomic structures at Au/TiO2 interface for O2 activation. J. Am. Chem. Soc. 142, 6456–6460 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, B. et al. Interfacial effects of CeO2-supported Pd nanorod in catalytic CO oxidation: a theoretical study. J. Phys. Chem. C. 119, 12923–12934 (2015).

    Article  CAS  Google Scholar 

  14. Liang, G. et al. Production of primary amines by reductive amination of biomass derived aldehydes/ketones. Angew. Chem. Int. Ed. 56, 3050–3054 (2017).

    Article  CAS  Google Scholar 

  15. Lu, J. et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Liang, H. et al. Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin. ACS Catal. 7, 6567–6572 (2017).

    Article  CAS  Google Scholar 

  17. Liu, P., Qin, R., Fu, G. & Zheng, N. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 139, 2122–2131 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal–support interactions. Group 8 noble metals supported on TiO2. J. Am. Chem. Soc. 100, 170–175 (1978).

    Article  CAS  Google Scholar 

  20. Braunschweig, E. J., Logan, A. D., Datye, A. K. & Smith, D. J. Reversibility of strong metal–support interactions on RhTiO2. J. Catal. 118, 227–237 (1989).

    Article  CAS  Google Scholar 

  21. van Deelen, T. W., Mejía, C. H. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  22. Deleitenburg, C. & Trovarelli, A. Metal–support interactions in Rh/CeO2, Rh/TiO2, and Rh/Nb2O5 catalysts as inferred from CO2 methanation activity. J. Catal. 156, 171–174 (1995).

    Article  CAS  Google Scholar 

  23. Tauster, S. J., Fung, S. C., Baker, R. T. K. & Horsley, J. A. Strong interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. Tang, H. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, e1700231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fu, Q., Wagner, T., Olliges, S. & Carstanjen, H.-D. Metal–oxide interfacial reactions: encapsulation of Pd on TiO2 (110). J. Phys. Chem. B 109, 944–951 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, S. et al. Dynamical observation and detailed description of catalysts under strong metal–support interaction. Nano Lett. 16, 4528–4534 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L. et al. Strong metal–support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 7, 7461–7465 (2017).

    Article  CAS  Google Scholar 

  28. Liu, X. et al. Strong metal–support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251–10258 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Tang, H. et al. Strong metal–support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 138, 56–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, H. et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal–support interaction for carbon monoxide oxidation. Angew. Chem. Int. Ed. 55, 10606–10611 (2016).

    Article  CAS  Google Scholar 

  31. Liu, S. et al. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 10, 5790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, J. et al. Wet-chemistry strong metal–support interactions in titania supported Au catalysts. J. Am. Chem. Soc. 141, 2975–2983 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Ren, G.-Q. et al. Exceptional antisintering gold nanocatalyst for diesel exhaust oxidation. Nano Lett. 18, 6489–6493 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Min, B. K. & Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem. Rev. 107, 2709–2724 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Cao, A., Lu, R. & Veser, G. Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys. 12, 13499–13510 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Molina, L. M. & Hammer, B. Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl. Catal. A 291, 21–31 (2005).

    Article  CAS  Google Scholar 

  38. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Dong, J., Fu, Q., Jiang, Z., Mei, B. & Bao, X. Carbide-supported Au catalysts for water-gas shift reactions: a new territory for the strong metal–support interaction effect. J. Am. Chem. Soc. 140, 13808–13816 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Fu, X.-P. et al. Direct identification of active surface species for water-gas shift reaction on gold-ceria catalyst. J. Am. Chem. Soc. 141, 4613–4623 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Z., Zhou, S., Zhu, H., Dai, S. & Overbury, S. H. DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst: nature and role of different Au species. J. Phys. Chem. C. 113, 3726–3734 (2009).

    Article  CAS  Google Scholar 

  42. Carrasquillo-Flores, R. et al. Reverse water-gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 137, 10317–10325 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Radnik, J., Mohr, C. & Claus, P. On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys. Chem. Chem. Phys. 5, 172–177 (2003).

    Article  CAS  Google Scholar 

  44. Sterrer, M., Risse, T., Heyde, M., Rust, H.-P. & Freund, H.-J. Crossover from three-dimensional to two-dimensional geometries of Au nanostructures on thin MgO(001) films: a confirmation of theoretical predictions. Phys. Rev. Lett. 98, 206103 (2007).

    Article  PubMed  Google Scholar 

  45. Frondelius, P., Häkkinen, H. & Honkala, K. Adsorption and activation of O2 at Au chains on MgO/Mo thin films. Phys. Chem. Chem. Phys. 12, 1483–1492 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Lim, J. Y. et al. Work function of MgO single crystals from ion-induced secondary electron emission coefficient. J. Appl. Phys. 94, 764–769 (2003).

    Article  CAS  Google Scholar 

  47. Pishtshev, A., Karazhanov, S. Z. & Klopov, M. Materials properties of magnesium and calcium hydroxides from first-principles calculations. Comp. Mater. Sci. 95, 693–705 (2014).

    Article  CAS  Google Scholar 

  48. Wang, X., Summers, C. J. & Wang, Z. L. Self-attraction among aligned Au/ZnO nanorods under electron beam. Appl. Phys. Lett. 86, 013111 (2005).

    Article  Google Scholar 

  49. Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).

    Article  CAS  Google Scholar 

  50. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Green, I. X., Tang, W., McEntee, M., Neurock, M., & Yates, J. T.Jr Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. J. Am. Chem. Soc. 134, 12717–12723 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Sicolo, S., Giordano, L. & Pacchioni, G. CO adsorption on one-, two-, and three-dimensional Au clusters supported on MgO/Ag(001) ultrathin films. J. Phys. Chem. C. 113, 10256–10263 (2009).

    Article  CAS  Google Scholar 

  53. Lin, X. et al. Charge-mediated adsorption behavior of CO on MgO-supported Au clusters. J. Am. Chem. Soc. 132, 7745–7749 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Sterrer, M. et al. When the reporter induces the effect: unusual IR spectra of CO on Au1/MgO(001)/Mo(001). Angew. Chem. Int. Ed. 45, 2633–2635 (2006).

    Article  CAS  Google Scholar 

  55. Brown, M. A., Carrasco, E., Sterrer, M. & Freund, H.-J. Enhanced stability of gold clusters supported on hydroxylated MgO(001) surfaces. J. Am. Chem. Soc. 132, 4064–4065 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Derrouiche, S., Gravejat, P. & Bianchi, D. Heats of adsorption of linear CO species adsorbed on the Au° and Ti sites of a 1% Au/TiO2 catalyst using in situ FTIR spectroscopy under adsorption equilibrium. J. Am. Chem. Soc. 126, 13010–13015 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. d’Alnoncourt, R. N. et al. Strong metal–support interactions between palladium and iron oxide and their effect on CO oxidation. J. Catal. 317, 220–228 (2014).

    Article  Google Scholar 

  58. Gao, Y., Liang, Y. & Chambers, S. A. Thermal stability and the role of oxygen vacancy defects in strong metal support interaction—Pt on Nb-doped TiO2(100). Surf. Sci. 365, 638–648 (1996).

    Article  CAS  Google Scholar 

  59. Wang, L. et al. Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nat. Commun. 11, 1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buelens, L. C., Galvita, V. V., Poelman, H., Detavernier, C. & Marin, G. B. Super-dry reforming of methane intensifies CO2 utilization via Le Chateliers principle. Science 354, 449–452 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (grant no. 2018YFD1000806-01), National Natural Science Foundation of China (grant nos. 21822203 and 21932006), Natural Science Foundation of Zhejiang Province (grant no. LR18B030002). We thank F. Chen at Zhejiang University for help with TEM characterization, J.-X. Chen at Tilon GRP Technology Limited for help with mass spectrometry characterization, and X. Chu at Jilin Jianzhu University for help with XPS characterization.

Author information

Authors and Affiliations

Authors

Contributions

H.W. carried out the catalyst preparation, characterization, and catalytic tests. D.L. and X.F. performed the in situ CO-adsorption DRIFTS experiments. Y.N. and B.Z. performed part of the TEM characterization. L.W. and F.-S.X. planned this study, analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Liang Wang or Feng-Shou Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Table 1 and references.

Source data

Source Data Fig. 1

Source data for Fig. 1a.

Source Data Fig. 2

Source data for Fig. 2a–c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, L., Lin, D. et al. Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat Catal 4, 418–424 (2021). https://doi.org/10.1038/s41929-021-00611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00611-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing