Skip to main content

Advertisement

Log in

Soil Bacterial Characteristics Under Four Habitats with Different Vegetation Communities on the Qinghai-Tibetan Plateau

  • General Wetland Science
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Soil bacteria play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and driving factors of permafrost microbial communities under typical alpine meadow habitats with different vegetation communities is limited. We analyzed the relationship between soil bacterial community and changes of environmental factors among four habitats (swamp wetland, swamp meadow, meadow, and mature meadow) with different dominant vegetation types on the eastern edge of Qinghai-Tibetan, China. The results showed that though the bacterial community composition among four habitats was similar, the proportions of dominant species and the bacterial biomarkers in each habitat were unique. The bacterial community structure of mature meadow was obviously distinct from the other three habitats, which derived from the significant difference in soil nutrients and shoot biomass compared to the others. Specifically, distance-based redundancy analysis showed that soil total nitrogen and soil water content explained the greatest difference in bacterial structures, followed by soil temperature, pH and shoot biomass. Different habitats formed various network patterns, which showed more significant connections in swamp meadow and meadow than swamp wetland and mature meadow. Rhizomicrobium, Pseudonocardia, Geobacter, Bryobacter, Syntrophorhabdus, Nitrospira, Solirubrobacter and Pedomicrobium were the most important keystone genera in the bacterial co-occurrence networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data and material produced from this study were provided in this manuscript. The datasets presented in this study can be found in online repositories. The names of the repository and accession number can be found below: https://www.ncbi.nlm.nih.gov/, PRJNA683866.

Code Availability

All codes in this study are available.

References

  • Arocha-Garza HF, Canales-Del Castillo R, Eguiarte LE, Souza V, De la Torre-Zavala S (2017) High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ 5:e3247

    Article  PubMed  PubMed Central  Google Scholar 

  • Augusto L, Ranger J, Ponette Q, Rapp M (2000) Relationships between forest tree species, stand production and stand nutrient amount. Annals of Forest Science 57:313–324

    Article  Google Scholar 

  • Bao S (2000) Soil agrochemical analysis, 3rd edn. China Agricultural Press, Beijing (in Chinese)

    Google Scholar 

  • Barberan A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The The ISME Journal 6:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bartram AK, Jiang X, Lynch MD, Masella AP, Nicol GW, Dushoff J (2014) Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. FEMS Microbiology Ecology 87:403–415

    Article  CAS  PubMed  Google Scholar 

  • Blaud A, Lerch TZ, Phoenix GK, Osborn AM (2015) Arctic soil microbial diversity in a changing world. Research Microbiology 166:796–813

    Article  Google Scholar 

  • Campbell BJ (2014) The family acidobacteriaceae. In: Rosenberg E, DeLong EF (eds) The prokaryotes. Springer, Berlin, pp 405–415

    Google Scholar 

  • Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur AG (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environmental Microbiology 12:1842–1854

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabrerie O, Laval K, Puget P, Desaire S, Alard D (2003) Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Applied Soil Ecology 24:43–56

    Article  Google Scholar 

  • Chong CW, Pearce DA, Convey P, Tan GA, Wong RC, Tan IK (2010) High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica. Soil Biology and Biochemistry 42:601–610

    Article  CAS  Google Scholar 

  • Chong CW, Pearce DA, Tan IK (2012) Assessment of soil bacterial communities on Alexander island (in the maritime and continental Antarctic transitional zone). Polar Biology 35:387–399

    Article  Google Scholar 

  • Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan R (2010) Soil bacterial diversity in the arctic is not fundamentally different from that found in other biomes. Environmental Microbiology 12:2998–3006

    Article  CAS  PubMed  Google Scholar 

  • Chu H, Neufeld JD, Walker VK, Grogan P (2011) The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low arctic tundra landscape. Soil Science Society of America Journal 75:1756

    Article  CAS  Google Scholar 

  • Cleland EE, Harpole WS (2010) Nitrogen enrichment and plant communities. Annals of the New York Academy of Sciences 1195:46–61

    Article  CAS  PubMed  Google Scholar 

  • Coolen M, Giessen J, Zhu EY, Wuchter C (2011) Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environmental Microbiology 13:2299–2314

    Article  CAS  PubMed  Google Scholar 

  • Cox TL, Sly LI (1997) Phylogenetic relationships and uncertain taxonomy of Pedomicrobium species. International Journal of Systematic and Evolutionary Microbiology 47:377–380

    CAS  Google Scholar 

  • Davide F, Elke S, Guillaume L, Tesfaye W, Franis B, Thomas R (2016) Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Frontiers in Microbiology 7:289

    Google Scholar 

  • DeBruyn J, Nixon L, Fawaz M, Johnson M, Radosevich M (2011) Global biogeography and quantitative season dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology 77:6295–6300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Yin Y, Zhu W, Zhou Y (2018) Variations in soil bacterial community diversity and structures among different revegetation types in the Baishilazinature reserve. Frontiers in Microbiology 9:2874

    Article  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal 6:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Frank-Fahle BA, Yergeau E, Greer CW, Lantuit H, Wagner D (2014) Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS One 9:e84761

    Article  PubMed  PubMed Central  Google Scholar 

  • Freppaz M, Williams BL, Edwards AC, Scalenghec R, Zaninia E (2006) Simulating soil freezing and thawing cycles typical of winter alpine conditions: Implications for N and P availability. Applied Soil Ecology 35:247–255

    Article  Google Scholar 

  • Frouz J, Pizl V, Cienciala E, Kalcik J (2009) Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94:111–121

    Article  CAS  Google Scholar 

  • Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. The ISME Journal 8:226–244

    Article  CAS  PubMed  Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur E, Schirrmeister L (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593

    Article  Google Scholar 

  • Huhe, Chen XJ, Hou FJ, Wu YP, Cheng YX (2017) Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Frontiers in Microbiology 8:606

    Article  PubMed  Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry 409:2843–2853

    Article  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa inlibraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology 72:1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao S, Liu Z, Lin Y, Yang J, Chen W, Wei G (2016) Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biology and Biochemistry 98:64–73

    Article  CAS  Google Scholar 

  • Kang H, Gao H, Yu W, Yi Y, Wang Y, Ning M (2018) Changes in soil microbial community structure and function after afforestation depend on species and age: case study in a subtropical alluvial island. Science of Total Environment 625:1423–1432

    Article  CAS  Google Scholar 

  • Kappler U, Davenport KW, Beatson SA, Lucas S, Lapidus A, Copeland A (2012) Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093T). Standards in Genomic Sciences 7:44–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L, Nam S (2014) Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiology Ecology 89:465–475

    Article  CAS  PubMed  Google Scholar 

  • Koyama A, Wallenstein MD, Simpson RT, Moore JC (2014) Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Frontiers in Microbiology 5:516–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Kragelund C, Thomsen TR, Mielczarek AT, Nielsen PH (2011) Eikelboom’s morphotype 0803 in activated sludge belongs to the genus Caldilinea in the phylum Chloroflexi. FEMS Microbiology Ecology 76:451–462

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Mannisto MK, van Elsas JD, Nissinen RM (2015) Plants impact structure and function of bacterial communities in Arctic soils. Plant Soil 399:319–332

    Article  Google Scholar 

  • Larose C, Berger S, Ferrari C, Navarro E, Dommergue A, Schneider D, Vogel TM (2010) Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles 14:205–212

    Article  PubMed  Google Scholar 

  • Lars G, Lipski A, Hans-Wolfgang H, Drik W (2011) The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiology Ecology 76:476–491

    Article  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lee-Cruz L, Edwards DP, Tripathi BM, Adams JM (2013) Impact of logging and forest conversion to oil palm plantations on soil bacterial communities in Borneo. Applied and Environmental Microbiology 79:7290–7297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Ren HD, Li S, Leng XH, Yao XH (2017) Soil bacterial community structure and co-occurrence pattern during vegetation restoration in karst rocky desertification area. Frontiers in Microbiology 8:2377

    Article  Google Scholar 

  • Liu J, Yao J, Wang F, Ni W, Liu X, Sunahara GI (2018) China’s most typical nonferrous organic-metal facilities own specific microbial communities. Scientific Reports 8:1–10

    Google Scholar 

  • Lopez S, Antony S, Sukaibin S, John B, Matsain A, Zarina E (2020) Bacterial community diversity in the rhizosphere of nickel hyperaccumulator plant species from Borneo Island (Malaysia). Environmental Microbiology 22(4):1649–1665

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Ueki T, Zhang T, Malvankar NS, Pravin F (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. Advances in Microbial Physiology 59:1–100

    Article  CAS  PubMed  Google Scholar 

  • Ma MJ, Zhou XH, Du GZ (2010) Role of soil seed bank along a disturbance gradient in an alpine meadow on the Tibet plateau. Flora 205(2):128–134

    Article  Google Scholar 

  • Ma MJ, Zhou XH, Du GZ (2011) Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau. Plant Soil 346:19–28

    Article  CAS  Google Scholar 

  • Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal 10:1891–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack I, Cuntz U, Gramer C (2016) Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Scientific Reports 6:26752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magot M, Fardeau M, Arnauld O, Lanau C, Ollivier B, Thomas (1997) Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiology Letters 155:185–191

    Article  CAS  PubMed  Google Scholar 

  • Mannisto MK, Tiirola MH, Haggblom MM (2007) Bacterial communities in Arctic fields of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiology Ecology 59:452–465

    Article  CAS  PubMed  Google Scholar 

  • Menyailo OV, Hungate BA, Zech W (2002) Tree species mediated soil chemical changes in a siberian artificial afforestation experiment. Plant Soil 242:171–182

    Article  CAS  Google Scholar 

  • Mitter EK, de Freitas JR, Germida JJ (2017) Bacterial root microbiome of plants growing in oil sands reclamation covers. Frontiers in Microbiology 8:849

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore RL (1981) The biology of hyphomicrobium and other prosthecate, budding bacteria. Annual Review Microbiology 35:567–594

    Article  CAS  Google Scholar 

  • Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend AR (2010) Plot-scale manipulations of organicmatter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biology and Biochemistry 42:2153–2160

    Article  CAS  Google Scholar 

  • Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology 98:1074–1083

    Article  Google Scholar 

  • Paul D, Scott C, Paul L, George W, Koch (2011) Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biology and Biochemistry 10:2023–2031

    Google Scholar 

  • Peris M, Eissa N, Charles NB (2015) Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PLoS One 10(11):e0142536

    Article  Google Scholar 

  • Ping C, Jastrow J, Jorgenson M, Michaelson G, Shur Y (2015) Permafrost soils and carbon cycling. Soil 1:147–171

    Article  CAS  Google Scholar 

  • Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470

    Article  PubMed  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology 18:1918–1927

    Article  Google Scholar 

  • Rui J, Li J, Wang S, An J, Liu WT, Lin Q (2015) Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau. Applied and Environmental Microbiology 81:6070–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Xiang X, Shen C, Chu H, Neufeld JD, Walker VK (2015) Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Applied and Environmental Microbiology 81:492–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Speirs L, Rice DT, Petrovski S, Seviour RJ (2019) The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge. Frontiers in Microbiology 10:2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microbial Ecology 64:474–484

    Article  PubMed  Google Scholar 

  • Ueki A, Kodama Y, Kaku N, ShiromurabT, Satoh A, Watanabe K (2010) Rhizomicrobium palustre gen. nov. sp. nov. a facultatively anaerobic, fermentative stalked bacterium in the class Alphaproteobacteria isolated from rice plant roots. Journal of Applied Microbiology 56:193

    CAS  Google Scholar 

  • Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528:69–76

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Li E, Liu C, Jousset A, Salles JF (2017) Functionality of root-associated bacteria along a salt marsh primary succession. Frontiers in Microbiology 8:2102

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zhao L, Chen M, Fang H, Yue G, Chen J (2012) Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet Plateau, China. Permafrost and Periglacial 23:162–169

    Article  Google Scholar 

  • Wu Q, Hou Y, Yun H, Liu Y (2015) Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China. Global Planet Change 124:149–155

    Article  Google Scholar 

  • Xiong J, Sun H, Peng F, Zhang H, Xue X, Gibbons SM (2014) Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiology Ecology 89:281–292

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wang Y, Yang K, Wang S, Zeng H, Baumann F (2012) Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS One 7:e34968

    Article  PubMed  PubMed Central  Google Scholar 

  • Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R, Kowalchuk GA (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. The ISME Journal 6:692–702

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Ehrenfeld JG (2010) Relationships among plants, soils and microbial communities along a hydrological gradient in the New Jersey Pinelands, USA. Annals of Botany 105:185–196

    Article  PubMed  Google Scholar 

  • Zhalnina K, Dias R, Quadros PD, Austin DR (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology 69:395–406

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang G, Chen Q, Han X (2013) Soil bacterial communities respond to climate changes in a temperate steppe. PLoS One 8:e78616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Shi Y, Jing X, He JS, Sun R, Yang Y (2016) Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Frontiers in Microbiology 7:104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wu X, Zhang G, Zhang W, Liu G, Chen T (2017) Response of soil bacterial community structure to permafrost degradation in the upstream regions of the Shule river basin, Qinghai-Tibet Plateau. Geomicrobiology Journal 34:300–308

    Article  Google Scholar 

  • Zhou YJ, Li JH, Ross FC (2017) Variation of soil bacterial communities in a chronosequence of rubber tree (Hevea brasiliensis) plantations. Frontiers in Plant Science 8:849

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Yunpeng Zhao, Mengjing Hou, Jinlong Gao from Lanzhou University for sampling. We thank Ningbo Wang from Beijing Allwegene Technology Co., Ltd., China for Sequencing, Dongjie An and Ye Xiao from Majorbio Technology Co., Ltd., China, and Yuyao Wang from the College of Forestry of Beijing Forestry University for providing technical supports.

Funding

This study was funded by the National Key R&D Program of China, “Research and Demonstration of Ecological Restoration Technology for Degraded Alpine Wetland” (2017YFC0504802).

Author information

Authors and Affiliations

Authors

Contributions

RW designed the study, performed the field investigation and collected the data, conducted the statistical analysis and wrote the manuscript. MW conducted the statistical analysis, reviewed and edited the manuscript. JW performed the field investigation and collected the data. JHY performed the field investigation and collected the data. XWL performed the field investigation and collected the data. YHL designed the study, reviewed and edited the manuscript. FKD designed the study, reviewed and edited the manuscript.

Corresponding author

Correspondence to Yinghua Lin.

Ethics declarations

Conflicts of interest/Competing interests

All authors declared that there is no conflict of interests regarding the publication of this manuscript. 

Ethics approval

There were no animal and human studies in our research.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rui Wang and Miao Wang contributed to the work equally and should be regarded as co-first authors.

Supplementary Information

ESM 1

(DOCX 1.34 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, M., Wang, J. et al. Soil Bacterial Characteristics Under Four Habitats with Different Vegetation Communities on the Qinghai-Tibetan Plateau. Wetlands 41, 58 (2021). https://doi.org/10.1007/s13157-021-01455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-021-01455-0

Keywords

Navigation