Skip to main content
Log in

Experimental and Thermal Analysis of Solar Thermoelectric System Performance Incorporated with Solar Tracker

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this study, it is aimed to determine the energy generation capability of the designed and manufactured thermoelectric system when mounted on the two-axis solar tracking system. Thus, it was possible to compare the results obtained from current study with previous study. The system used in previous study was comprised of a thermoelectric generator (TEG) for energy conversion, a linear Fresnel lens for concentrating solar rays, and a one-axis tracking system to increase the electrical and thermal efficiency of the system. In this study, a dual-axis (two-axis) tracking system was used as a tracking system to examine the change in thermal and electrical efficiency. Therefore, experimental measurements were performed again using both two-axis and one-axis solar tracking systems on 16th October 2019 and 17th October 2019, respectively, at the location which falls at 41°14′ N and 36°26′ E. Additionally, the heat transfer and electricity generation performance of TEG was theoretically analyzed using CFD model. For this purpose, a numerical model consisting TEG with heat sink was developed. It was observed that the model data obtained and the experimental data were in good agreement. The values of parameters such as temperature, solar radiation, wind speed and TEG open circuit voltage were measured instantaneously during the measurements. The maximum open circuit voltages obtained is 1.02 and 1.13 V for one-axis and dual-axis systems, respectively. The solar radiation values were measured as 464 and 472 \(\mathrm{W}/{\mathrm{m}}^{2}\), respectively when the maximum open circuit voltages value is obtained. The duration for measurements was kept about 15 min so that the average values of these parameters were used in calculations. Thus, the values of maximum output power \(\left({\mathrm{P}}_{\mathrm{maxout}}\right)\), electrical efficiency \(\left({\upeta }_{\mathrm{e}}\right)\) and Seebeck coefficient \(\left( {\alpha _{{{\text{TEG}}}} } \right)\) were calculated and given in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({c}_{p}\) :

Specific heat capacity, \(\mathrm{J}/(\mathrm{kg}\cdot \mathrm{K})\)

ce :

Ceramic plates

co :

Copper electrodes

E :

Electric field intensity vector, \(\mathrm{mV}/{\mathrm{mm}}^{2}\)

h :

Hot side

\(I\) :

Electric current, mA

\({I}_{si}\) :

Solar irradiation, \(\mathrm{W}/{\mathrm{m}}^{2}\)

J :

Current density vector, \(\mathrm{mA}/{\mathrm{mm}}^{2}\)

L :

Load resistance

n :

N-type thermoelement

Nu :

Nusselt number

p :

P-type thermoelement

\({P}_{maxout}\) :

Maximum output power, \(\mathrm{W}\)

\({P}_{in}\) :

Incident power, \(\mathrm{W}\)

\(Q\) :

Heat, \(\mathrm{W}\)

R :

Resistance, \(\Omega\)

\({R}_{int}\) :

Internal resistance of the TE module, \(\Omega\)

\({R}_{T}\) :

Thermal resistance of the used TE module, \({^\circ{\rm C} }/\mathrm{W}\)

\({R}_{L}\) :

Load resistance, \(\Omega\)

T :

Temperature, \(\mathrm{K}\)

\(\Delta T\) :

Temperature difference between hot side and cold side of used TEG module, ℃

\({T}_{c}\) :

Thermoelectric cold side temperature, ℃

\({T}_{h}\) :

Thermoelectric hot side temperature, ℃

TE :

Thermoelectric

\({V}_{oc}\) :

Open circuit voltage, \(\mathrm{V}\)

\(\alpha\) :

Seebeck coefficient, \(\upmu {\rm V}/\mathrm{K}\)

\({\alpha }_{TEG}\) :

Effective Seebeck coefficient of the TEG module

η :

Efficiency

\({\eta }_{e}\) :

Electrical efficiency, %

λ :

Thermal conductivity, \(\mathrm{W}/(\mathrm{m}\cdot \mathrm{K})\)

\(\mu\) :

Dynamic viscosity, \(\mathrm{kg}/(\mathrm{m}\cdot \mathrm{s})\)

\(\rho\) :

Density, \(\mathrm{kg}/{\mathrm{m}}^{3}\)

\(\varphi\) :

Electric potential, \(\mathrm{mV}\)

\({\sigma }^{-1}\) :

Electrical resistivity, \(\Omega \cdot \mathrm{m}\)

References

  1. Bhandari, B., Lee, K. T., Lee, G. Y., Cho, Y. M., & Ahn, S. H. (2015). Optimization of hybrid renewable energy power systems: A review. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-015-0013-z.

    Article  Google Scholar 

  2. Ha, K., Truong, H. V. A., Dang, T. D., & Ahn, K. K. (2021). Recent control technologies for floating offshore wind energy system: A review. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00269-5.

    Article  Google Scholar 

  3. Ebhota, W. S., & Jen, T. C. (2020). Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast tracking hybrid renewable energy system. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00101-9.

    Article  Google Scholar 

  4. Idoko, L., Anaya-Lara, O., & McDonald, A. (2018). Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Reports. https://doi.org/10.1016/j.egyr.2018.05.004.

    Article  Google Scholar 

  5. Castro, L. M., Rodríguez-Rodrízguez, J. R., & Martin-del-Campo, C. (2020). Modelling of PV systems as distributed energy resources for steady-state power flow studies. Electrical Power and Energy Systems. https://doi.org/10.1016/j.ijepes.2019.105505.

    Article  Google Scholar 

  6. Rowe, D. M. (1995). Handbook of thermoelectrics. . CRC Press.

    Google Scholar 

  7. Choi, H. J., Cho, C., Woo, S., Lee, J. Y., Yoo, Y. E., Jeon, M., Kim, G. H., Je, T. J., & Jeon, E. C. (2020). Manufacturing of compound parabolic concentrator devices using an ultra-fine planing method for enhancing efficiency of a solar cell. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00287-3.

    Article  Google Scholar 

  8. Huang, R., Zhang, X. Q., Ng, B. P., Kumar, A. S., & Liu, K. (2021). Roll-to-roll embossing of optical radial fresnel lenses on polymer film for concentrator photovoltaics: A feasibility study. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00166-6.

    Article  Google Scholar 

  9. Mu, L., Xu, X., Williams, T., Debroux, C., Gomez, R. C., Park, Y. H., Wang, H., Kota, K., Xu, P., & Kuravi, S. (2019). Enhancing the performance of a single-basin single-slope solar still by using Fresnel lens: Experimental study. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118094.

    Article  Google Scholar 

  10. Meng, J., Song, P. P., Wei, M. S., Tian, G. H., Zhao, M., Zheng, H. F., & Hu, G. D. (2019). Experimental study of a micro-scale solar organic Rankine cycle system based on compound cylindrical Fresnel lens solar concentrator. Science Chin Technological Sciences. https://doi.org/10.1007/s11431-019-9562-4.

    Article  Google Scholar 

  11. Willars-Rodríguez, F. J., Chavez-Urbiola, E. A., Vorobiev, P., & Vorobiev, Y. V. (2017). Investigation of solar hybrid system with concentrating Fresnel lens, photovoltaic and thermoelectric generators. International Journal of Energy Research, 41, 377–388.

    Article  Google Scholar 

  12. Perini, S., Tonnellier, X., King, P., & Sansom, C. (2017). Theoretical and experimental analysis of an innovative dual-axis tracking linear Fresnel lenses concentrated solar thermal collector. Solar Energy. https://doi.org/10.1016/j.solener.2017.06.010.

    Article  Google Scholar 

  13. Nia, M. H., Nejad, A. A., Goudarzi, A. M., Valizadeh, M., & Samadian, P. (2014). Cogeneration solar system using thermoelectric module and Fresnel lens. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2014.04.041.

    Article  Google Scholar 

  14. Gupta, M., Dubey, A. K., Kumar, C., & Mehta, D. S. (2019). Solar concentrator based multipurpose sunlight harvesting system without tracking. OSA Continuum. https://doi.org/10.1364/OSAC.2.000667.

    Article  Google Scholar 

  15. Korecko, J., Jirka, V., Sourek, B., & Cerveny, J. (2010). Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters. Solar Energy, 84, 1794–1808.

    Article  Google Scholar 

  16. Tripanagnostopoulos, Y., Siabekou, Ch., & Tonui, J. K. (2007). The Fresnel lens concept for solar control of buildings. Solar Energy, 81, 661–675.

    Article  Google Scholar 

  17. Miller, D. C., & Kurtz, S. R. (2011). Durability of Fresnel lenses: A review specific to the concentrating photovoltaic application. Solar Energy Materials and Solar Cells, 95, 2037–2068.

    Article  Google Scholar 

  18. Sonneveld, P. J., Swinkels, G. L. A. M., van Tuijl, B. A. J., Janssen, H. J. J., Campen, J., & Bot, G. P. A. (2011). Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses. Solar Energy, 85, 432–442.

    Article  Google Scholar 

  19. Ahmadi, M. H., Ghazvini, M., Sadeghzadeh, M., Nazari, M. A., Kumar, R., Naeimi, A., & Ming, T. (2018). Solar power technology for electricity generation: A critical review. Energy Science and Engineering. https://doi.org/10.1002/ese3.239.

    Article  Google Scholar 

  20. Özdemir, A. E., Köysal, Y., Özbaş, E., & Atalay, T. (2015). The experimental design of solar heating thermoelectric generator with wind cooling chimney. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2015.03.108.

    Article  Google Scholar 

  21. Atalay, T., Köysal, Y., Özdemir, A. E., & Özbaş, E. (2018). Evaluation of energy efficiency of thermoelectric generator with two-phase thermo-syphon heat pipes and nano-particle fluids. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-018-0001-1.

    Article  Google Scholar 

  22. Köysal, Y., Özdemir, A. E., & Atalay, T. (2018). Experimental and modeling study on solar system using linear Fresnel lens and thermoelectric module. Journal of Solar Energy Engineering. https://doi.org/10.1115/1.4039777.

    Article  Google Scholar 

  23. Köysal, Y. (2019). Performance analysis on solar concentrating thermoelectric generator coupled with heat sink. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-019-00060-w.

    Article  Google Scholar 

  24. Mahmouudinezhad, S., Rezaniakolaei, A., & Rosendahl, L. A. (2019). Numerical parametric study on the performance of CPV–TEG hybrid system. Energy Procedia. https://doi.org/10.1016/j.egypro.2019.01.131.

    Article  Google Scholar 

  25. Nayak, R. K., Ray, S., Sahoo, S. S., & Satapathy, P. K. (2019). Effect of angle of attack and wind direction on limiting input heat flux for solar assisted thermoelectric power generator with plate fin heat sink. Solar Energy. https://doi.org/10.1016/j.solener.2019.05.010.

    Article  Google Scholar 

  26. Date, A., Date, A., Dixon, C., Singh, R., & Akbarzadeh, A. (2015). Theoretical and experimental estimation of limiting input heat flux for thermoelectric power generators with passive cooling. Solar Energy. https://doi.org/10.1016/j.solener.2014.10.043.

    Article  Google Scholar 

  27. Eldesoukey, A., & Hassan, H. (2019). 3D model of thermoelectric generator (TEG) case study: Effect of flow regime on the TEG performance. Energy Conversion and Management, 180, 231–239.

    Article  Google Scholar 

  28. Mahmoudinezhad, S., Rezania, A., & Rosendahl, L. A. (2018). Behavior of hybrid concentrated photovoltaic-thermoelectric generator under variable solar radiation. Energy Conversion and Management, 164, 443–452.

    Article  Google Scholar 

  29. Darkwa, J., Calautit, J., Du, D., & Kokogianakis, G. A. (2019). Numerical and experimental analysis of an integrated TEG–PCM power enhancement system for photovoltaic cells. Applied Energy. https://doi.org/10.1016/j.apenergy.2019.04.147.

    Article  Google Scholar 

  30. Hazama, H., Masuoka, Y., Suzumura, A., Matsubara, M., Tajima, S., & Asahi, R. (2018). Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency. Applied Energy. https://doi.org/10.1016/j.apenergy.2018.06.015.

    Article  Google Scholar 

  31. Karthick, K., Suresh, S., Joy, G. C., & Dhanuskodi, R. (2019). Experimental investigation of solar reversible power generation in thermoelectric generator (TEG) using thermal energy storage. Energy for Sustainable Development. https://doi.org/10.1016/j.esd.2018.11.002.

    Article  Google Scholar 

  32. Pourkiaei, S. M., Ahmadi, M. H., Sadeghzadeh, M., Moosavi, M., Pourfayaz, F., Chen, L., Yazdi, M. A. P., & Kumar, R. (2019). Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy. https://doi.org/10.1016/j.energy.2019.07.179.

    Article  Google Scholar 

  33. Yılmaz, M. (2017). Improving tracking efficiency of two axis tracking systems. Batman University Journal of Life Sciences, 7(1/2), 56–62.

    Google Scholar 

  34. Sidek, M. H. M., Azis, N., Hasan, W. Z. W., Ab Kadir, M. Z. A., Shafie, S., & Radzi, M. A. M. (2017). Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy. https://doi.org/10.1016/j.energy.2017.02.001.

    Article  Google Scholar 

  35. Zhang, P., Zhou, G., Zhu, Z., Li, W., & Cai, Z. (2013). Numerical study on the properties of an active sun tracker for solar street light. Mechatronics. https://doi.org/10.1016/j.mechatronics.2013.08.007.

    Article  Google Scholar 

  36. Ansys Fluent Tutorial Guide. (2017). Ansys Inc, Canonsburg, PA.

  37. Luo, D., Wang, R., & Yu, W. (2019). Comparison and parametric study of two theoretical modeling approaches based on an air-to-water thermoelectric generator system. Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2019.227069.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavuz Köysal.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atalay, T., Yakut, Y., Köysal, Y. et al. Experimental and Thermal Analysis of Solar Thermoelectric System Performance Incorporated with Solar Tracker. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 587–602 (2022). https://doi.org/10.1007/s40684-021-00341-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00341-8

Keywords

Navigation