Skip to main content
Log in

Chemical variation with altitude and longitude on exo-Neptunes: Predictions for Ariel phase-curve observations

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Using two-dimensional (2D) thermal structure models and pseudo-2D chemical kinetics models, we explore how atmospheric temperatures and composition change as a function of altitude and longitude within the equatorial regions of close-in transiting Neptune-class exoplanets at different distances from their host stars. Our models predict that the day-night stratospheric temperature contrasts increase with increasing planetary effective temperatures Teff and that the atmospheric composition changes significantly with Teff. We find that horizontal transport-induced quenching is very effective in our simulated exo-Neptune atmospheres, acting to homogenize the vertical profiles of species abundances with longitude at stratospheric pressures where infrared observations are sensitive. Our models have important implications for planetary emission observations as a function of orbital phase with the Ariel mission. Cooler solar-composition exo-Neptunes with Teff = 500–700 K are strongly affected by photochemistry and other disequilibrium chemical processes, but their predicted variations in infrared emission spectra with orbital phase are relatively small, making them less robust phase-curve targets for Ariel observations. Hot solar-composition exo-Neptunes with Teff ≥ 1300 K exhibit strong variations in infrared emission with orbital phase, making them great targets for constraining global temperatures, energy-balance details, atmospheric dynamics, and the presence of certain high-temperature atmospheric constituents. However, such high-temperature exo-Neptunes are arguably less interesting from an atmospheric chemistry standpoint, with spectral signatures being dominated by a small number of species whose abundances are expected to be constant with longitude and consistent with thermochemical equilibrium. Solar-composition exo-Neptunes with Teff = 900–1100 K reside in an interesting intermediate regime, with infrared phase curve variations being affected by both temperature and composition variations, albeit at smaller predicted phase-curve amplitudes than for the hotter planets. This interesting intermediate regime shifts to smaller temperatures as atmospheric metallicity is increased, making cool higher-metallicity Neptune-class planets appropriate targets for Ariel phase-curve observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://kurucz.harvard.edu/stars.html

  2. http://opendata.erc-atmo.eu

References

  1. Agúndez, M., Parmentier, V., Venot, O., Hersant, F., Selsis, F.: Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b. Astron. Astrophys. 564, A73 (2014a)

    Article  ADS  Google Scholar 

  2. Agúndez, M., Venot, O., Iro, N., Selsis, F., Hersant, F., Hébrard, E., Dobrijevic, M.: The impact of atmospheric circulation on the chemistry of the hot Jupiter HD 209458b. Astron. Astrophys. 548, A73 (2012)

    Article  ADS  Google Scholar 

  3. Agúndez, M., Venot, O., Selsis, F., Iro, N.: The puzzling chemical composition of GJ 436b’s atmosphere: Influence of tidal heating on the chemistry. Astrophys. J. 781, 68 (2014b)

    Article  ADS  Google Scholar 

  4. Allen, M., Yung, Y.L., Waters, J.W.: Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50-120 km). J. Geophys. Res. 86, 3617–3627 (1981)

    Article  ADS  Google Scholar 

  5. Amundsen, D.S., Baraffe, I., Tremblin, P., Manners, J., Hayek, W., Mayne, N.J., Acreman, D.M.: Accuracy tests of radiation schemes used in hot Jupiter global circulation models. Astron. Astrophys. 564, A59 (2014)

    Article  ADS  Google Scholar 

  6. Amundsen, D.S., Tremblin, P., Manners, J., Baraffe, I., Mayne, N.J.: Treatment of overlapping gaseous absorption with the correlated-k method in hot Jupiter and brown dwarf atmosphere models. Astron. Astrophys. 598, A97 (2017)

    Article  ADS  Google Scholar 

  7. Arcangeli, J., Desert, J.M., Line, M.R., Bean, J.L., Parmentier, V., Stevenson, K.B., Kreidberg, L., Fortney, J.J., Mansfield, M., Showman, A.P.: H opacity and water dissociation in the dayside atmosphere of the very hot gas giant WASP-18 b. Astrophys. J. Lett. 855, L30 (2018)

    Article  ADS  Google Scholar 

  8. Bailey, J.: The Dawes Review 3: The atmospheres of extrasolar planets and brown dwarfs. Pub. Astron. Soc. Australia 31, e043 (2014)

    Article  ADS  Google Scholar 

  9. Batalha, N.M., Rowe, J.F., Bryson, S.T., Barclay, T., Burke, C.J., Caldwell, D.A., Christiansen, J.L., Mullally, F., Thompson, S.E., Brown, T.M., Dupree, A.K., Fabrycky, D.C., Ford, E.B., Fortney, J.J., Gilliland, R.L., Isaacson, H., Latham, D.W., Marcy, G.W., Quinn, S.N., Ragozzine, D., Shporer, A., Borucki, W.J., Ciardi, D.R., Gautier, T.N. III, Haas, M.R., Jenkins, J.M., Koch, D.G., Lissauer, J.J., Rapin, W., Basri, G.S., Boss, A.P., Buchhave, L.A., Carter, J.A., Charbonneau, D., Christensen-Dalsgaard, J., Clarke, B.D., Cochran, W.D., Demory, B.O., Desert, J.M., Devore, E., Doyle, L.R., Esquerdo, G.A., Everett, M., Fressin, F., Geary, J.C., Girouard, F.R., Gould, A., Hall, J.R., Holman, M.J., Howard, A.W., Howell, S.B., Ibrahim, K.A., Kinemuchi, K., Kjeldsen, H., Klaus, T.C., Li, J., Lucas, P.W., Meibom, S., Morris, R.L., Prša, A., Quintana, E., Sanderfer, D.T., Sasselov, D., Seader, S.E., Smith, J.C., Steffen, J.H., Still, M., Stumpe, M.C., Tarter, J.C., Tenenbaum, P., Torres, G., Twicken, J.D., Uddin, K., Van Cleve, J., Walkowicz, L., Welsh, W.F.: Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. Astrophys. J. Suppl. Ser. 204, 24 (2013). https://doi.org/10.1088/0067-0049/204/2/24

    Article  ADS  Google Scholar 

  10. Blumenthal, S.D., Mandell, A.M., Hébrard, E., Batalha, N.E., Cubillos, P.E., Rugheimer, S., Wakeford, H.R.: A comparison of simulated JWST observations derived from equilibrium and non-equilibrium chemistry models of giant exoplanets. Astrophys. J. 853, 138 (2018)

    Article  ADS  Google Scholar 

  11. Bordwell, B., Brown, B.P., Oishi, J.S.: Convective dynamics and disequilibrium chemistry in the atmospheres of giant planets and brown dwarfs. Astrophys. J. 854, 8 (2018)

    Article  ADS  Google Scholar 

  12. Caffau, E., Ludwig, H.G., Steffen, M., Freytag, B., Bonifacio, P.: Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Sol. Phys. 268, 255–269 (2011)

    Article  ADS  Google Scholar 

  13. Carone, L., Baeyens, R., Mollière, P., Barth, P., Vazan, A., Decin, L., Sarkis, P., Venot, O., Henning, T.: Equatorial retrograde flow in WASP-43b elicited by deep wind jets. Mon. Not. Roy. Astron. Soc. 496, 3582–3614 (2020)

    Article  ADS  Google Scholar 

  14. Cavalié, T., Venot, O., Selsis, F., Hersant, F., Hartogh, P., Leconte, J.: Thermochemistry and vertical mixing in the tropospheres of Uranus and neptune: How convection inhibition can affect the derivation of deep oxygen abundances. Icarus 291, 1–16 (2017)

    Article  ADS  Google Scholar 

  15. Charnay, B., Meadows, V., Misra, A., Leconte, J., Arney, G.: 3D Modeling of GJ1214b’s atmosphere: Formation of Inhomogeneous High Clouds and Observational Implications. Astrophys. J. Lett. 813, L1 (2015)

    Article  ADS  Google Scholar 

  16. Charnay, B., Mendonça, J., Kreidberg, L., Cowan, N.B., Taylor, J., Bell, T.J., Demangeon, O., Edwards, B., Haswell, C., Morello, G., Mugnai, L.V., Pascale, E., Tinetti, G., Tremblin, P., Zellem, R.: A survey of exoplanet phase curves with ariel. Experimental Astronomy submitted xxx (2020)

  17. Choksi, N., Chiang, E.: Sub-neptune formation: The view from resonant planets. Mon. Not. Roy. Astron. Soc. 495, 4192–4209 (2020)

    Article  ADS  Google Scholar 

  18. Cooper, C.S., Showman, A.P.: Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. Astrophys. J. 649, 1048–1063 (2006)

    Article  ADS  Google Scholar 

  19. Cowan, N.B., Agol, E.: A model for thermal phase variations of circular and eccentric exoplanets. Astrophys. J. 726, 82 (2011)

    Article  ADS  Google Scholar 

  20. Cowan, N.B., Greene, T., Angerhausen, D., Batalha, N.E., Clampin, M., Colón, K., Crossfield, I.J.M., Fortney, J.J., Gaudi, B.S., Harrington, J., Iro, N., Lillie, C.F., Linsky, J.L., Lopez-Morales, M., Mandell, A.M., Stevenson, K.B.: ExoPAG SAG-10: Characterizing transiting planet atmospheres through 2025. Publ. Astron. Soc. Pac. 127, 311–327 (2015). https://doi.org/10.1086/680855

    Article  ADS  Google Scholar 

  21. Cowan, N.B., Machalek, P., Croll, B., Shekhtman, L.M., Burrows, A., Deming, D., Greene, T., Hora, J.L.: Thermal phase variations of WASP-12b: Defying predictions. Astrophys. J. 747, 82 (2012)

    Article  ADS  Google Scholar 

  22. Crossfield, I.J.M.: Observations of exoplanet atmospheres. Pub. Astron. Soc. Pacific 127, 941–960 (2015)

    Article  ADS  Google Scholar 

  23. Debras, F., Mayne, N., Baraffe, I., Jaupart, E., Mourier, P., Laibe, G., Goffrey, T., Thuburn, J.: Acceleration of superrotation in simulated hot Jupiter atmospheres. Astron. Astrophys. 633, A2 (2020)

    Article  ADS  Google Scholar 

  24. Deming, D., Seager, S.: Illusion and reality in the atmospheres of exoplanets. J. Geophys. Res. 122, 53–75 (2017). https://doi.org/10.1002/2016JE005155

    Article  Google Scholar 

  25. Drummond, B., Hebrard, E., Mayne, N.J., Venot, O., Ridgway, R.J., Changeat, Q., Tsai, S.M., Manners, J., Tremblin, P., Abraham, N.L., Sing, D., Kohary, K.: Implications of three-dimensional chemical transport in hot Jupiter atmospheres: results from a consistently coupled chemistry-radiation-hydrodynamics model. Astron. Astrophys. 636, A68 (2020)

    Article  Google Scholar 

  26. Drummond, B., Mayne, N.J., Baraffe, I., Tremblin, P., Manners, J., Amundsen, D.S., Goyal, J., Acreman, D.: The effect of metallicity on the atmospheres of exoplanets with fully coupled 3D hydrodynamics, equilibrium chemistry, and radiative transfer. Astron. Astrophys. 612, A105 (2018)

    Article  ADS  Google Scholar 

  27. Drummond, B., Mayne, N.J., Manners, J., Carter, A.L., Boutle, I.A., Baraffe, I., Hébrard, É., Tremblin, P., Sing, D.K., Amundsen, D.S., Acreman, D.: Observable signatures of wind-driven chemistry with a fully consistent three-dimensional radiative hydrodynamics model of HD 209458b. Astrophys. J. Lett. 855, L31 (2018)

    Article  ADS  Google Scholar 

  28. Drummond, B., Tremblin, P., Baraffe, I., Amundsen, D.S., Mayne, N.J., Venot, O., Goyal, J.: The effects of consistent chemical kinetics calculations on the pressure-temperature profiles and emission spectra of hot jupiters. Astron. Astrophys. 594, A69 (2016)

    Article  ADS  Google Scholar 

  29. Fegley, B. Jr, Lodders, K.: Atmospheric chemistry of the brown dwarf Gliese 229b: Thermochemical equilibrium predictions. Astrophys. J. 472, L37 (1996)

    Article  ADS  Google Scholar 

  30. Fleury, B., Gudipati, M.S., Henderson, B.L., Swain, M.: Photochemistry in hot H2-dominated exoplanet atmospheres. Astrophys. J. 871, 158 (2019)

    Article  ADS  Google Scholar 

  31. Fortney, J.J.: The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy. Mon. Not. Roy. Astron. Soc. 364, 649–653 (2005)

    Article  ADS  Google Scholar 

  32. Fortney, J.J., Cooper, C.S., Showman, A.P., Marley, M.S., Freedman, R.S.: The influence of atmospheric dynamics on the infrared spectra and light curves of hot Jupiters. Astrophys. J. 652, 746–757 (2006)

    Article  ADS  Google Scholar 

  33. Fortney, J.J., Lodders, K., Marley, M.S., Freedman, R.S.: A unified theory for the atmospheres of the hot and very hot jupiters: Two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008a)

    Article  ADS  Google Scholar 

  34. Fortney, J.J., Mordasini, C., Nettelmann, N., Kempton, E.M.R., Greene, T.P., Zahnle, K.: A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 775, 80 (2013)

    Article  ADS  Google Scholar 

  35. Fressin, F., Torres, G., Charbonneau, D., Bryson, S.T., Christiansen, J., Dressing, C.D., Jenkins, J.M., Walkowicz, L.M., Batalha, N.M.: The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013). https://doi.org/10.1088/0004-637X/766/2/81

    Article  ADS  Google Scholar 

  36. Freytag, B., Allard, F., Ludwig, H.G., Homeier, D., Steffen, M.: The role of convection, overshoot, and gravity waves for the transport of dust in M dwarf and brown dwarf atmospheres. Astron. Astrophys. 513, A19 (2010)

    Article  Google Scholar 

  37. Gao, P., Thorngren, D.P., Lee, G.K.H., Fortney, J.J., Morley, C.V., Wakeford, H.R., Powell, D.K., Stevenson, K.B., Zhang, X.: Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nature Astronomy 4, 951–956 (2020)

    Article  ADS  Google Scholar 

  38. García Muñoz, A.: Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55, 1426–1455 (2007)

    Article  ADS  Google Scholar 

  39. Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311 (1994)

  40. Goyal, J.M., Mayne, N., Drummond, B., Sing, D.K., Hébrard, E., Lewis, N., Tremblin, P., Phillips, M.W., Mikal-Evans, T., Wakeford, H.R.: A library of self-consistent simulated exoplanet atmospheres. Mon. Not. Roy. Astron. Soc. 498, 4680–4704 (2020)

    Article  ADS  Google Scholar 

  41. Goyal, J.M., Mayne, N., Sing, D.K., Drummond, B., Tremblin, P., Amundsen, D.S., Evans, T., Carter, A.L., Spake, J., Baraffe, I., Nikolov, N., Manners, J., Chabrier, G., Hebrard, E.: A library of ATMO forward model transmission spectra for hot Jupiter exoplanets. Mon. Not. Roy. Astron. Soc. 474, 5158–5185 (2018)

    Article  ADS  Google Scholar 

  42. Goyal, J.M., Mayne, N., Sing, D.K., Drummond, B., Tremblin, P., Amundsen, D.S., Evans, T., Carter, A.L., Spake, J., Baraffe, I., Nikolov, N., Manners, J., Chabrier, G., Hebrard, E.: Errata: A library of ATMO forward model transmission spectra for hot Jupiter exoplanets. Mon. Not. Roy. Astron. Soc. 486, 783–795 (2019)

    Article  ADS  Google Scholar 

  43. Hammond, M., Pierrehumbert, R.T.: Wave-mean flow interactions in the atmospheric circulation of tidally locked planets. Astrophys. J. 869, 65 (2018)

    Article  ADS  Google Scholar 

  44. He, C., Hörst, S. M., Lewis, N.K., Moses, J.I., Kempton, E.M.R., Marley, M.S., Morley, C.V., Valenti, J.A., Vuitton, V.: Gas phase chemistry of cool exoplanet atmospheres: Insight from laboratory simulations. ACS Earth and Space Chemistry 3, 39–50 (2019). https://doi.org/10.1021/acsearthspacechem.8b00133

    Article  ADS  Google Scholar 

  45. He, C., Hörst, S.M., Lewis, N.K., Yu, X., Moses, J.I., Kempton, E.M.R., Marley, M.S., McGuiggan, P., Morley, C.V., Valenti, J.A., Vuitton, V.: Photochemical haze formation in the atmospheres of super-Earths and mini-Neptunes. Astron. J. 156, 38 (2018)

    Article  ADS  Google Scholar 

  46. He, C., Hörst, S.M., Lewis, N.K., Yu, X., Moses, J.I., Kempton, E.M.R., McGuiggan, P., Morley, C.V., Valenti, J.A., Vuitton, V.: Laboratory simulations of haze formation in the atmospheres of super-Earths and mini-Neptunes: Particle color and size distribution. Astrophys. J. Lett. 856, L3 (2018)

    Article  ADS  Google Scholar 

  47. Helled, R., Bodenheimer, P.: The formation of Uranus and neptune: Challenges and implications for intermediate-mass exoplanets. Astrophys. J. 789, 69 (2014)

    Article  ADS  Google Scholar 

  48. Helled, R., Lunine, J.: Measuring Jupiter’s water abundance by juno: The link between interior and formation models. Mon. Not. Roy. Astron. Soc. 441, 2273–2279 (2014)

    Article  ADS  Google Scholar 

  49. Helling, C.: Exoplanet clouds. Annu. Rev. Earth Planet. Sci. 47, 583–606 (2019)

    Article  ADS  Google Scholar 

  50. Helling, C., Kawashima, Y., Graham, V., Samra, D., Chubb, K.L., Min, M., Waters, L.B.F.M., Parmentier, V.: Mineral cloud and hydrocarbon haze particles in the atmosphere of the hot Jupiter JWST target WASP-43b. Astron. Astrophys. 641, A178 (2020)

    Article  ADS  Google Scholar 

  51. Helling, C., Lee, G., Dobbs-Dixon, I., Mayne, N., Amundsen, D.S., Khaimova, J., Unger, A.A., Manners, J., Acreman, D., Smith, C.: The mineral clouds on HD 209458b and HD 189733b. Mon. Not. Roy. Astron. Soc. 460, 855–883 (2016)

    Article  ADS  Google Scholar 

  52. Hobbs, R., Shorttle, O., Madhusudhan, N., Rimmer, P.: A chemical kinetics code for modelling exoplanetary atmospheres. Mon. Not. Roy. Astron. Soc. 487, 2242–2261 (2019)

    Article  ADS  Google Scholar 

  53. Hörst, S.M., He, C., Lewis, N.K., Kempton, E.M.R., Marley, M.S., Morley, C.V., Moses, J.I., Valenti, J.A., Vuitton, V.: Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nature Astron 2, 303–306 (2018). https://doi.org/10.1038/s41550-018-0397-0

    Article  ADS  Google Scholar 

  54. Hu, R., Seager, S.: Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes. Astrophys. J. 784, 63 (2014)

    Article  ADS  Google Scholar 

  55. Hubeny, I., Burrows, A.: A systematic study of departures from chemical equilibrium in the atmospheres of substellar mass objects. Astrophys. J. 669, 1248–1261 (2007)

    Article  ADS  Google Scholar 

  56. Hubeny, I., Burrows, A., Sudarsky, D.: A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. Lett. 594, 1011–1018 (2003)

    Article  ADS  Google Scholar 

  57. Iro, N., Deming, L.D.: A time-dependent radiative model for the atmosphere of the eccentric exoplanets. Astrophys. J. 712, 218–225 (2010)

    Article  ADS  Google Scholar 

  58. Irwin, P.G.J., Toledo, D., Braude, A.S., Bacon, R., Weilbacher, P.M., Teanby, N.A., Fletcher, L.N., Orton, G.S.: Latitudinal variation in the abundance of methane (CH4) above the clouds in Neptune’s atmosphere from VLT/MUSE Narrow Field Mode Observations. Icarus 331, 69–82 (2019). https://doi.org/10.1016/j.icarus.2019.05.011

    Article  ADS  Google Scholar 

  59. Joshi, M.M., Haberle, R.M., Reynolds, R.T.: Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: Conditions for atmospheric collapse and the implications for habitability. Icarus 129, 450–465 (1997)

    Article  ADS  Google Scholar 

  60. Kataria, T., Showman, A.P., Fortney, J.J., Stevenson, K.B., Line, M.R., Kreidberg, L., Bean, J.L., Désert, J. M.: The atmospheric circulation of the hot Jupiter WASP-43b: Comparing three-dimensional models to spectrophotometric data. Astrophys. J. 801, 86 (2015). https://doi.org/10.1088/0004-637X/801/2/86

    Article  ADS  Google Scholar 

  61. Kawashima, Y., Ikoma, M.: Theoretical transmission spectra of exoplanet atmospheres with hydrocarbon haze: Effect of creation, growth, and settling of haze particles. I. Model description and first results. Astrophys. J. 853, 7 (2018)

    Article  ADS  Google Scholar 

  62. Kawashima, Y., Ikoma, M.: Theoretical transmission spectra of exoplanet atmospheres with hydrocarbon haze: Effect of creation, growth, and settling of haze particles. II. Dependence on UV irradiation intensity, metallicity, C/O ratio, eddy diffusion coefficient, and temperature. Astrophys. J. 877, 109 (2019)

    Article  ADS  Google Scholar 

  63. Kite, E.S., Fegley Bruce, J., Schaefer, L., Ford, E.B.: Atmosphere origins for exoplanet Sub-Neptunes. Astrophys. J. 891, 111 (2020)

    Article  ADS  Google Scholar 

  64. Kitzmann, D., Heng, K., Rimmer, P.B., Hoeijmakers, H.J., Tsai, S.M., Malik, M., Lendl, M., Deitrick, R., Demory, B.O.: The peculiar atmospheric chemistry of KELT-9b. Astrophys. J. 863, 183 (2018)

    Article  ADS  Google Scholar 

  65. Knutson, H.A., Charbonneau, D., Allen, L.E., Fortney, J.J., Agol, E., Cowan, N.B., Showman, A.P., Cooper, C.S., Megeath, S.T.: A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007)

    Article  ADS  Google Scholar 

  66. Knutson, H.A., Charbonneau, D., Cowan, N.B., Fortney, J.J., Showman, A.P., Agol, E., Henry, G.W., Everett, M.E., Allen, L.E.: Multiwavelength constraints on the day-night circulation patterns of HD 189733b. Astrophys. J. 690, 822–836 (2009)

    Article  ADS  Google Scholar 

  67. Knutson, H.A., Lewis, N., Fortney, J.J., Burrows, A., Showman, A.P., Cowan, N.B., Agol, E., Aigrain, S., Charbonneau, D., Deming, D., Désert, J. M., Henry, G.W., Langton, J., Laughlin, G.: 3.6 and 4.5 μ m phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. Astrophys. J. 754, 22 (2012)

    Article  ADS  Google Scholar 

  68. Komacek, T.D., Showman, A.P.: Atmospheric circulation of hot jupiters: Dayside-nightside temperature differences. Astrophys. J. 821, 16 (2016)

    Article  ADS  Google Scholar 

  69. Komacek, T.D., Showman, A.P., Parmentier, V.: Vertical tracer mixing in hot Jupiter atmospheres. Astrophys. J. 881, 152 (2019)

    Article  ADS  Google Scholar 

  70. Komacek, T.D., Showman, A.P., Tan, X.: Atmospheric circulation of hot jupiters: Dayside-nightside temperature differences. II. Comparison with observations. Astrophys. J. 835, 198 (2017)

    Article  ADS  Google Scholar 

  71. Kopparapu, R.K., Kasting, J.F., Zahnle, K.J.: A photochemical model for the carbon-rich planet WASP-12b. Astrophys. J. 745, 77 (2012)

    Article  ADS  Google Scholar 

  72. Koskinen, T.T., Harris, M.J., Yelle, R.V., Lavvas, P.: The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical-dynamical model of the thermosphere. Icarus 226, 1678–1694 (2013)

    Article  ADS  Google Scholar 

  73. Koskinen, T.T., Yelle, R.V., Harris, M.J., Lavvas, P.: The escape of heavy atoms from the ionosphere of HD209458b. II. Interpretation of the observations. Icarus 226, 1695–1708 (2013)

    Article  ADS  Google Scholar 

  74. Kurokawa, H., Nakamoto, T.: Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population. Astrophys. J. 783, 54 (2104)

    Article  Google Scholar 

  75. Lambrechts, M., Morbidelli, A., Jacobson, S.A., Johansen, A., Bitsch, B., Izidoro, A., Raymond, S.N.: Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. Astron. Astrophys. 627, A83 (2019)

    Article  ADS  Google Scholar 

  76. Lavvas, P., Koskinen, T., Yelle, R.V.: Electron densities and alkali atoms in exoplanet atmospheres. Astrophys. J. 796, 15 (2014). https://doi.org/10.1088/0004-637X/796/1/15

    Article  ADS  Google Scholar 

  77. Leconte, J., Forget, F., Lammer, H.: On the (anticipated) diversity of terrestrial planet atmospheres. Exp. Astron. 40, 449–467 (2015)

    Article  ADS  Google Scholar 

  78. Lee, G., Dobbs-Dixon, I., Helling, C., Bognar, K., Woitke, P.: Dynamic mineral clouds on HD 189733b. i. 3D RHD with kinetic, non-equilibrium cloud formation. Astron. Astrophys. 594, A48 (2016)

    Article  ADS  Google Scholar 

  79. Lee, G.K.H., Wood, K., Dobbs-Dixon, I., Rice, A., Helling, C.: Dynamic mineral clouds on HD 189733b. II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: combining scattering and emission spectra. Astron. Astrophys. 601, A22 (2017)

    Article  ADS  Google Scholar 

  80. Lewis, N.K., Knutson, H.A., Showman, A.P., Cowan, N.B., Laughlin, G., Burrows, A., Deming, D., Crepp, J.R., Mighell, K.J., Agol, E., Bakos, GÁ, Charbonneau, D., Désert, J.M., Fischer, D.A., Fortney, J.J., Hartman, J.D., Hinkley, S., Howard, A.W., Johnson, J.A., Kao, M., Langton, J., Marcy, G.W.: Orbital phase variations of the eccentric giant planet HAT-P-2b. Astrophys. J. 766, 95 (2013)

    Article  ADS  Google Scholar 

  81. Lewis, N.K., Showman, A.P., Fortney, J.J., Marley, M.S., Freedman, R.S., Lodders, K.: Atmospheric circulation of eccentric hot Neptune GJ436b. Astrophys. J. 720, 344–356 (2010)

    Article  ADS  Google Scholar 

  82. Lindzen, R.S.: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–9714 (1981)

    Article  ADS  Google Scholar 

  83. Line, M.R., Vasisht, G., Chen, P., Angerhausen, D., Yung, Y.L.: Thermochemical and photochemical kinetics in cooler hydrogen-dominated extrasolar planets: A methane-poor GJ436b? Astrophys. J. 738, 32 (2011)

    Article  ADS  Google Scholar 

  84. Lines, S., Manners, J., Mayne, N.J., Goyal, J., Carter, A.L., Boutle, I.A., Lee, G.K.H., Helling, C., Drummond, B., Acreman, D.M., Sing, D.K.: Exonephology: transmission spectra from a 3D simulated cloudy atmosphere of HD 209458b. Mon. Not. Roy. Astron. Soc. 481, 194–205 (2018)

    Article  ADS  Google Scholar 

  85. Lines, S., Mayne, N.J., Boutle, I.A., Manners, J., Lee, G.K.H., Helling, C., Drummond, B., Amundsen, D.S., Goyal, J., Acreman, D.M., Tremblin, P., Kerslake, M.: Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model. Astron. Astrophys. 615, A97 (2018)

    Article  ADS  Google Scholar 

  86. Lines, S., Mayne, N.J., Manners, J., Boutle, I.A., Drummond, B., Mikal-Evans, T., Kohary, K., Sing, D.K.: Overcast on osiris: 3D radiative-hydrodynamical simulations of a cloudy hot Jupiter using the parametrized, phase-equilibrium cloud formation code EDDYSED. Mon. Not. Roy. Astron. Soc. 488, 1332–1355 (2019)

    Article  ADS  Google Scholar 

  87. Liou, K.N.: An Introduction to Atmospheric Radiation, 2nd edn. Academic Press, New York (2002)

    Google Scholar 

  88. Lodders, K., Fegley, B.: Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. i. carbon, nitrogen, and oxygen. Icarus 155, 393–424 (2002)

    Article  ADS  Google Scholar 

  89. Lopez, E.D., Fortney, J.J.: The role of core mass in controlling evaporation: The Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 777, 2 (2013)

    Article  ADS  Google Scholar 

  90. Lopez, E.D., Fortney, J.J.: Understanding the mass-radius relation for sub-neptunes: Radius as a proxy for composition. Astrophys. J. 792, 1 (2014)

    Article  ADS  Google Scholar 

  91. Lupu, R.E., Marley, M.S., Lewis, N., Line, M., Traub, W.A., Zahnle, K.: Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. I. Methane abundances and basic cloud properties. Astron. J. 152, 217 (2016)

    Article  ADS  Google Scholar 

  92. Madhusudhan, N.: Exoplanetary atmospheres: Key insights, challenges and prospects. Ann. Rev. Astron. Astrophys. 57, 617–663 (2019)

    Article  ADS  Google Scholar 

  93. Madhusudhan, N., Agúndez, M., Moses, J.I., Hu, Y.: Exoplanetary atmospheres — chemistry, formation conditions, and habitability. Space Sci Rev. https://doi.org/10.1007/s11214-016-0254-3 (2016)

  94. Marley, M.S., Ackerman, A.S., Cuzzi, J.N., Kitzmann, D.: Clouds and Hazes in Exoplanet Atmospheres. In: Mackwell, S.J., Simon-Miller, A.A., Harder, J.W., Bullock, M.A. (eds.) Comparative Climatology of Terrestrial Planets, pp 367–391. Univ. Arizona Press, Tucson (2013)

  95. Mazeh, T., Holczer, T., Faigler, S.: Dearth of short-period Neptunian exoplanets: A desert in period-mass and period-radius planes. Astron. Astrophys. 589, A75 (2106)

    Article  Google Scholar 

  96. Mendonça, J.M., Tsai, S.M., Malik, M., Grimm, S.L., Heng, K.: Three-dimensional circulation driving chemical disequilibrium in WASP-43b. Astrophys. J. 869, 107 (2018)

    Article  ADS  Google Scholar 

  97. Mendonċa, J.M.: Angular momentum and heat transport on tidally locked hot Jupiter planets. Mon. Not. Roy. Astron. Soc. 491, 1456–1470 (2020)

    Article  ADS  Google Scholar 

  98. Miguel, Y., Kaltenegger, L.: Exploring atmospheres of hot mini-Neptunes and extrasolar giant planets orbiting different stars with application to HD 97658b, WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. Astrophys. J. 780, 166 (2014)

    Article  ADS  Google Scholar 

  99. Miguel, Y., Kaltenegger, L., Linsky, J.L., Rugheimer, S.: The effect of Lyman α radiation on mini-Neptune atmospheres around M stars: application to GJ 436b. Mon. Not. Roy. Astron. Soc. 446, 345–353 (2015)

    Article  ADS  Google Scholar 

  100. Molaverdikhani, K., Henning, T., Mollière, P.: From cold to hot irradiated gaseous exoplanets: Fingerprints of chemical disequilibrium in atmospheric spectra. Astrophys. J. 883, 194 (2019)

    Article  ADS  Google Scholar 

  101. Moran, S.E., Hörst, S.M., Vuitton, V., He, C., Lewis, N.K., Flandinet, L., Moses, J.I., North, N., Orthous-Daunay, F.R., Sebree, J., Wolters, C., Kempton, E.M.R., Marley, M.S., Morley, C.V., Valenti, J.A.: Chemistry of temperate super-Earth and mini-Neptune atmospheric hazes from laboratory experiments. Planet. Sci. J. 1, 17 (2020)

    Article  Google Scholar 

  102. Mordasini, C.: Planetary evolution with atmospheric photoevaporation. I. Analytical derivation and numerical study of the evaporation valley and transition from super-Earths to sub-Neptunes. Astron. Astrophys. 638, A52 (2020)

    Article  ADS  Google Scholar 

  103. Mordasini, C., van Boekel, R., Mollière, P., Henning, T., Benneke, B.: The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016)

    Article  ADS  Google Scholar 

  104. Morley, C.V., Fortney, J.J., Marley, M.S., Visscher, C., Saumon, D., Leggett, S.K.: Neglected clouds in T and Y dwarf atmospheres. Astrophys. J. 756, 172 (2012)

    Article  ADS  Google Scholar 

  105. Moses, J.I.: Chemical kinetics on extrasolar planets. Phil. Trans. R. Soc. A 372, 20130,073 (2014)

    Article  Google Scholar 

  106. Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., Allen, M.: Photochemistry of Saturn’s atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus 143, 244–298 (2000)

    Article  ADS  Google Scholar 

  107. Moses, J.I., Fouchet, T., Bézard, B., Gladstone, G.R., Lellouch, E., Feuchtgruber, H.: Photochemistry and diffusion in Jupiter’s stratosphere: Constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. 110, E08,001 (2005). https://doi.org/10.1029/2005JE002411

    Google Scholar 

  108. Moses, J.I., Line, M.R., Visscher, C., Richardson, M.R., Nettelmann, N., Fortney, J.J., Barman, T.S., Stevenson, K.B., Madhusudhan, N.: Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436b. Astrophys. J. 777, 34 (2013)

    Article  ADS  Google Scholar 

  109. Moses, J.I., Madhusudhan, N., Visscher, C., Freedman, R.S.: Chemical consequences of the C/O ratio on hot jupiters: Examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. Astrophys. J. 763, 25 (2013)

    Article  ADS  Google Scholar 

  110. Moses, J.I., Marley, M.S., Zahnle, K., Line, M.R., Fortney, J.J., Barman, T.S., Visscher, C., Lewis, N.K., Wolff, M.J.: On the composition of young, directly imaged giant planets. Astrophys. J. 829, 66 (2016)

    Article  ADS  Google Scholar 

  111. Moses, J.I., Visscher, C., Fortney, J.J., Showman, A.P., Lewis, N.K., Griffith, C.A., Klippenstein, S.J., Shabram, M., Friedson, A.J., Marley, M.S., Freedman, R.S.: Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011)

    Article  ADS  Google Scholar 

  112. Mugnai, L.V., Pascale, E., Edwards, B., Papageorgiou, A., Sarkar, S.: Arielrad: The Ariel radiometric model. Exp. Astron. 50, 303–328 (2020)

    Article  ADS  Google Scholar 

  113. Murray-Clay, R.A., Chiang, E.I., Murray, N.: Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009)

    Article  ADS  Google Scholar 

  114. Owen, J.E., Wu, Y.: Kepler planets: A tale of evaporation. Astrophys. J. 775, 105 (2013)

    Article  ADS  Google Scholar 

  115. Parmentier, V., Crossfield, I.J.M.: Exoplanet Phase Curves: Observations and Theory. In: Deeg, H., Belmonte, J. (eds.) Handbook of Exoplanets, pp 1419–1440. Springer (2018)

  116. Parmentier, V., Fortney, J.J., Showman, A.P., Morley, C., Marley, M.S.: Transitions in the cloud composition of hot Jupiters. Astrophys. J. 828, 22 (2016)

    Article  ADS  Google Scholar 

  117. Parmentier, V., Showman, A.P., Lian, Y.: 3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b. Astron. Astrophys. 558, A91 (2013)

    Article  ADS  Google Scholar 

  118. Perez-Becker, D., Showman, A.P.: Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776, 134 (2013)

    Article  ADS  Google Scholar 

  119. Petigura, E.A., Marcy, G.W., Howard, A.W.: A plateau in the planet population below twice the size of earth. Astrophys. J. 770, 69 (2013). https://doi.org/10.1088/0004-637X/770/1/69

    Article  ADS  Google Scholar 

  120. Prinn, R.G., Barshay, S.S.: Carbon monoxide on Jupiter and implications for atmospheric convection. Science 198, 1031–1034 (1977)

    Article  ADS  Google Scholar 

  121. Rimmer, P.B., Helling, C.: A chemical kinetics network for lightning and life in planetary atmospheres. Astrophys. J. Suppl. Ser. 224, 9 (2016)

    Article  ADS  Google Scholar 

  122. Roman, M.T., Kempton, E.M.R., Rauscher, E., Harada, C.K., Bean, J.L., Stevenson, K.B.: Clouds in three-dimensional models of hot Jupiters over a wide range of temperatures I: Thermal structures and broadband phase curve predictions. arXiv:2010.06936 (2020)

  123. collab=Sanchis-Ojeda, R., Rappaport, S., Winn, J.N., Kotson, M.C., Levine, A., El Mellah, I.: A study of the shortest-period planets found with Kepler. Astrophys. J. 787, 47 (2104)

    Google Scholar 

  124. Saumon, D., Geballe, T.R., Leggett, S.K., Marley, M.S., Freedman, R.S., Lodders, K., Fegley Jr., B., Sengupta, S.K.: Molecular abundances in the atmosphere of the T Dwarf GL 229B. Astrophys. J. 541, 374–389 (2000)

    Article  ADS  Google Scholar 

  125. Schwartz, J.C., Kashner, Z., Jovmir, D., Cowan, N.B.: Phase offsets and the energy budgets of hot Jupiters. Astrophys. J. 850, 154 (2017)

    Article  ADS  Google Scholar 

  126. Showman, A.P., Cho, J.Y.K., Menou, K.: Atmospheric Circulation of Exoplanets. In: Seager, S. (ed.) Exoplanets, pp 471–516. Univ. Arizona Press, Tucson (2010)

  127. Showman, A.P., Fortney, J.J., Lian, Y., Marley, M.S., Freedman, R.S., Knutson, H.A., Charbonneau, D.: Atmospheric circulation of hot jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564–584 (2009)

    Article  ADS  Google Scholar 

  128. Showman, A.P., Guillot, T.: Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 385, 166–180 (2002)

    Article  ADS  Google Scholar 

  129. Showman, A.P., Kaspi, Y., Flierl, G.R.: Scaling laws for convection and jet speeds in the giant planets. Icarus 211, 1258–1273 (2011)

    Article  ADS  Google Scholar 

  130. Shulyak, D., Lara, L.M., Rengel, M., Nemec, N.E.: Stellar impact on disequilibrium chemistry and on observed spectra of hot Jupiter atmospheres. Astron. Astrophys. 639, A48 (2020)

    Article  ADS  Google Scholar 

  131. Sromovsky, L.A., Karkoschka, E., Fry, P.M., Hammel, H.B., de Pater, I., Rages, K.: Methane depletion in both polar regions of Uranus inferred from HST/STIS and keck/NIRC2 observations. Icarus 238, 137–155 (2014)

    Article  ADS  Google Scholar 

  132. Steinrueck, M.E., Parmentier, V., Showman, A.P., Lothringer, J.D., Lupu, R.E.: The effect of 3D transport-induced disequilibrium carbon chemistry on the atmospheric structure, phase curves, and emission spectra of hot Jupiter HD 189733b. Astrophys. J. 880, 14 (2019)

    Article  ADS  Google Scholar 

  133. Stevenson, K.B., Désert, J.M., Line, M.R., Bean, J.L., Fortney, J.J., Showman, A.P., Kataria, T., Kreidberg, L., McCullough, P.R., Henry, G.W., Charbonneau, D., Burrows, A., Seager, S., Madhusudhan, N., Williamson, M.H., Homeier, D.: Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346, 838–841 (2014). https://doi.org/10.1126/science.1256758

    Article  ADS  Google Scholar 

  134. Tinetti, G., Drossart, P., Eccleston, P., Hartogh, P., Heske, A., Leconte, J., Micela, G., Ollivier, M., Pilbratt, G., Puig, L., et al.: A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018)

    Article  ADS  Google Scholar 

  135. Tremblin, P., Amundsen, D.S., Chabrier, G., Baraffe, I., Drummond, B., Hinkley, S., Mourier, P., Venot, O.: Cloudless atmospheres for L/T dwarfs and extrasolar giant planets. Astrophys. J. Lett. 817, L19 (2016)

    Article  ADS  Google Scholar 

  136. Tremblin, P., Amundsen, D.S., Mourier, P., Baraffe, I., Chabrier, G., Drummond, B., Homeier, D., Venot, O.: Fingering convection and cloudless models for cool brown dwarf atmospheres. Astrophys. J. Lett. 804, L17 (2015)

    Article  ADS  Google Scholar 

  137. Tremblin, P., Chabrier, G., Baraffe, I., Liu, M.C., Magnier, E.A., Lagage, P.O., Alves de Oliveira, C., Burgasser, A.J., Amundsen, D.S., Drummond, B.: Cloudless atmospheres for young low-gravity substellar objects. Astrophys. J. 850, 46 (2017)

    Article  ADS  Google Scholar 

  138. Tremblin, P., Chabrier, G., Mayne, N.J., Amundsen, D.S., Baraffe, I., Debras, F., Drummond, B., Manners, J., Fromang, S.: Advection of potential temperature in the atmosphere of irradiated exoplanets: a robust mechanism to explain radius inflation. Astrophys. J. 841, 30 (2017)

    Article  ADS  Google Scholar 

  139. Tsai, S.M., Kitzmann, D., Lyons, J.R., Mendonça, J., Grimm, S.L., Heng, K.: Toward consistent modeling of atmospheric chemistry and dynamics in exoplanets: Validation and generalization of chemical relaxation method. Astrophys. J. 862, 31 (2018)

    Article  ADS  Google Scholar 

  140. Tsai, S.M., Lyons, J.R., Grosheintz, L., Rimmer, P.B., Kitzmann, D., Heng, K.: VULCAN: An Open-source, Validated chemical kinetics Python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017)

    Article  ADS  Google Scholar 

  141. Venot, O., Agúndez, M., Selsis, F., Tessenyi, M., Iro, N.: The atmospheric chemistry of the warm Neptune GJ 3470b: Influence of metallicity and temperature on the CH4/CO ratio. Astron. Astrophys. 562, A51 (2014)

    Article  ADS  Google Scholar 

  142. Venot, O., Bounaceur, R., Dobrijevic, M., Hébrard, E., Cavalié, T., Tremblin, P., Drummond, B., Charnay, B.: Reduced chemical scheme for modelling warm to hot hydrogen-dominated atmospheres. Astron. Astrophys. 624, A58 (2019)

    Article  ADS  Google Scholar 

  143. Venot, O., Drummond, B., Miguel, Y., Waldmann, I.P., Pascale, E., Zingales, T.: A better characterization of the chemical composition of exoplanets atmospheres with ARIEL. Exp. Astron. 46, 101–134 (2018)

    Article  ADS  Google Scholar 

  144. Venot, O., Fray, N., Bénilan, Y., Gazeau, M.C., Hébrard, E., Larcher, G., Schwell, M., Dobrijevic, M., Selsis, F.: High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets. Astron. Astrophys. 551, A131 (2013)

    Article  Google Scholar 

  145. Venot, O., Hébrard, E., Agúndez, M., Dobrijevic, M., Selsis, F., Hersant, F., Iro, N., Bounaceur, R.: A chemical model for the atmosphere of hot Jupiters. Astron. Astrophys. 546, A43 (2012)

    Article  ADS  Google Scholar 

  146. Venot, O., Parmentier, V., Blecic, J., Cubillos, P.E., Waldmann, I.P., Changeat, Q., Moses, J.I., Tremblin, P., Crouzet, N., Gao, P., Powell, D., Lagage, P.O., Dobbs-Dixon, I., Steinrueck, M.E., Kreidberg, L., Batalha, N., Bean, J.L., Stevenson, K.B., Casewell, S., Carone, L.: Global chemistry and thermal structure models for the Hot Jupiter WASP-43b and predictions for JWST. Astrophys. J. 890, 176 (2020)

    Article  ADS  Google Scholar 

  147. Venturini, J., Helled, R.: The formation of mini-Neptunes. Astrophys. J. 848, 95 (2017)

    Article  ADS  Google Scholar 

  148. Visscher, C., Lodders, K., Fegley Jr., B.: Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. III. iron, magnesium, and silicon. Astrophys. J. 716, 1060–1075 (2010a)

    Article  ADS  Google Scholar 

  149. Visscher, C., Moses, J.I.: Quenching of carbon monoxide and methane in the atmospheres of cool brown dwarfs and hot Jupiters. Astrophys. J. 738, 72 (2011)

    Article  ADS  Google Scholar 

  150. Visscher, C., Moses, J.I., Saslow, S.A.: The deep water abundance on jupiter: New constraints from thermochemical kinetics and diffusion modeling. Icarus 209, 602–615 (2010b)

    Article  ADS  Google Scholar 

  151. Wang, D., Miguel, Y., Lunine, J.: Modeling synthetic spectra for transiting extrasolar giant planets: Detectability of H2S and PH3 with the James Webb Space Telescope. Astrophys. J. 850, 199 (2017)

    Article  ADS  Google Scholar 

  152. Wang, H., Wordsworth, R.: Extremely long convergence times in a 3D GCM simulation of the sub-Neptune Gliese 1214b. Astrophys. J. 891, 7 (2020)

    Article  ADS  Google Scholar 

  153. Yung, Y.L., Allen, M., Pinto, J.P.: Photochemistry of the atmosphere of titan: Comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984)

    Article  ADS  Google Scholar 

  154. Yung, Y.L., DeMore, W.B.: Photochemistry of planetary atmospheres. Oxford University Press, Oxford (1999)

    Book  Google Scholar 

  155. Zahnle, K., Marley, M.S., Morley, C.V., Moses, J.I.: Photolytic hazes in the atmosphere of 51 Eri b. Astrophys. J. 824, 137 (2016)

    Article  ADS  Google Scholar 

  156. Zahnle, K.J., Marley, M.S.: Methane, carbon monoxide, and ammonia in brown dwarfs and self-luminous giant planets. Astrophys. J. 797, 41 (2014)

    Article  ADS  Google Scholar 

  157. Zhang, X., Showman, A.P.: Effects of bulk composition on the atmospheric dynamics on close-in exoplanets. Astrophys. J. 836, 73 (2017)

    Article  ADS  Google Scholar 

  158. Zhang, X., Showman, A.P.: Global-mean vertical tracer mixing in planetary atmospheres. I. Theory and fast-rotating planets. Astrophys. J. 866, 1 (2018). https://doi.org/10.3847/1538-4357/aada85

    Article  ADS  Google Scholar 

  159. Zhang, X., Showman, A.P.: Global-mean vertical tracer mixing in planetary atmospheres. II. Tidally Locked Planets. Astrophys. J. 866, 2 (2018). https://doi.org/10.3847/1538-4357/aada7c

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for insightful comments that improved the manuscript. We gratefully acknowledge support from the NASA Exoplanets Research Program grant NNX16AC64G (J.M.), the European Research Council Grant Agreement ATMO 757858 (P.T.), the CNRS/INSU Programme National de Planétologie (PNP) and CNES (O.V.), and most recently NASA grant 80NSSC19K0536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julianne I. Moses.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Aeronautics and Space Administration under grant number NNX16AC64G issued through the Exoplanets Research Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moses, J.I., Tremblin, P., Venot, O. et al. Chemical variation with altitude and longitude on exo-Neptunes: Predictions for Ariel phase-curve observations. Exp Astron 53, 279–322 (2022). https://doi.org/10.1007/s10686-021-09749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09749-1

Keywords

Navigation