Skip to main content
Log in

Characterization of TiO2 Microparticle-Blended Polymer-Based Hybrid Wood Particulate Composites

  • Published:
Mechanics of Composite Materials Aims and scope

The effects of TiO2 microparticle blending on the mechanical and thermal properties and the water absorption behavior of hybrid Pinus/Shorea robusta wood particulate-epoxy composites have been investigated. The tensile, flexural, impact, microhardness, and water absorption tests and a thermogravimetric analysis were performed for the hybrid composites. The results obtained, in comparison with those of a pristine composite, are presented in the form of tables and figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. R. Pelaez-Samaniego, V. Yadama, E. Lowell, and R. Espinoza-Herrera, “A review of wood thermal pretreatments to improve wood composite properties,” Wood Sci. Technol., 47, No. 6, 1285-1319 (2013).

    Article  CAS  Google Scholar 

  2. N. K. Jain and M. K. Gupta, “Hybrid teak/sal wood flour reinforced compoosites: mechanical, thermal, and water absorption properties,” Mater. Res. Express, 5, 125306 (2018).

    Article  Google Scholar 

  3. M. Saxena and M. K. Gupta, “Hybrid mango/shorea robusta wood reinforced epoxy composites: crystalline behaviour and dynamic mechanical analysis,” Mater. Today, 5, 19359-19366 (2018).

    CAS  Google Scholar 

  4. A. K. Mohanty, M. Misra, and G. Hinrichsen, “Biofibers, biodegradable polymers and biocomposites: An overview,” Macromol. Mater. Eng., 276, 1-24 (2000).

    Article  Google Scholar 

  5. O. Hosseinaei, S. Wang, A. A. Enayati, and T. G. Rials, “Effects of hemicellulose extraction on properties of wood flour and wood-pastic composites,” Compos. Part A Appl. Sci. Manuf., 43, 686-694 (2012).

    Article  CAS  Google Scholar 

  6. D. N. Saheb and J. P. Jog, “Natural fiber polymer composites: a review,” Adv. Polym. Tech., 18, No. 4, 351-363 (1999).

    Article  CAS  Google Scholar 

  7. A. Schirp and M. P. Wolcott, “Influence of fungal decay and moisture absorption on mechanical properties of extruded wood-plastic composites,” Wood Fiber Sci., 37, No. 4, 643-652 (2005).

    Google Scholar 

  8. M. Ramesh and L. Rajeshkumar, in: Anish Khan, Showkat Ahmad Bhawani, Abdullah M. Asiri, and Imran Khan (eds.), Thermoset Composites: Preparation, Properties, and Application, Material Research Foundation, Ch. 2, MRF, USA, 33-65 (2018).

  9. M. Valente, F. Sarasini, F. Marra, J. Tirillo, and G. Pulci, “Hybrid recycled glass fiber/ wood flour thermoplastic composites: manufacturing and mechanical chracterization,” Compos. Part A Appl. Sci. Manuf., 42, 649-657 (2011).

    Article  Google Scholar 

  10. M. K. Gupta and R. K. Srivastava, “Mechanical, thermal and water absorption properties of hybrid sisal/jute fiber reinforced polymer compsite,” Indian J. Eng. Mater. S., 23, 231-238 (2016).

    CAS  Google Scholar 

  11. M. Saxena and M. K. Gupta , “Mechanical, thermal, and water absorption properties of hybrid wood composites,” P. I. Mech. Eng. L-J Mat., 233, 1914-1922 (2018).

    Google Scholar 

  12. G. Kalaprasad, B. Francis, S. Thomas , C. R. Kumar, C. Pavithran, G. Groeninckx, and S. Thomas, “Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites,” Polym. Int., 53, 1624-1638 (2004).

    Article  CAS  Google Scholar 

  13. L. Y. Mwaikambo and M. P. Ansell, “The effect of chemical treatment on the properties of hemp, sisal, jute, and kapok for composite reinforcement,” Angew. Makromol., 272, No. 1, 108-116 (1999).

    Article  CAS  Google Scholar 

  14. M. N. Ichazo, C. Albano, J. Gonzalez, R. Perera, and M. V. Candal, “Polypropylene/wood flour composites: treatments and properties,” Compos. Struct., 54, No. 2-3, 207-214 (2001).

    Article  Google Scholar 

  15. M. Kazayawok, J. J. Balatinecs, and L. M. Matuana, “Surface modification and adhesion mechanisms in wood fiberpolypropylene/veneer composites,” Holz Roh-Werkstoff, 272, No. 1, 319-326 (2001).

    Google Scholar 

  16. J. M. Fleix and P. Gatenholm, “The nature of adhesion in composites of modified cellulose fibers and polypropylene,” J. Appl. Polym. Sci., 42, No. 3, 609-620 (1991).

    Article  Google Scholar 

  17. S. H. Lee and S. Wang, “Biodegradable polymers/ bamboo fiber biocomposite with biobased coupling agent,” Compos. Part A Appl. Sci. Manuf., 37, No. 1, 80-91 (2006).

    Article  CAS  Google Scholar 

  18. F. P. Liu, M. P. Wolcott, D. J. Gardner, and T. G. Rails , “Characterization of the interface between cellulosic fibers and a thermoplastic matrix,” Compos. Interface, 2, No. 6, 419-432 (1994).

    Article  CAS  Google Scholar 

  19. V. Prasad, M. A. Joseph, and K. Sekar, “Investigation of mechanical, thermal and water absorption properties of flax fibre reinforced epoxy composite with nano TiO2 addition,” Compos. Part A Appl. Sci. Manuf., 115, 360-370 (2018).

    Article  CAS  Google Scholar 

  20. I. Ghasemi and B. Kord, “Long-term water absorption behaviour of polypropylene/ wood flour/ organoclay hybrid nanocomposite,” Iran. Polym. J., 18, No. 9, 683-691 (2009).

    CAS  Google Scholar 

  21. N. Saba, P. M. Tahir, and M. Jawaid, “A review on potentiality of nano filler/natural fiber filled polymer hybrid composites,” Polymers, 6, 2247-2273 (2014).

    Article  Google Scholar 

  22. B. Kord, A. Sheykholeslami, and A. Najafi, “Effect of nanoclay on the flexural creep behavior of wood/plastic composites,” Mech. Compos. Mater., 51, 731-736 (2016).

    Article  CAS  Google Scholar 

  23. A. P. Meera, S. Said, Y. Grohens, A. S. Luyt, and S. Thomas, “Tensile stress relaxation studies of TiO2 and natural rubber composites,” Ind. Eng. Chem. Res., 48, No.7, 3410-3416 (2009).

    Article  CAS  Google Scholar 

  24. X. Liu, Y. Cui, S. Hao, and H. Chen, “Influence of depositing nano-SiO2 particles on the surface microstructure and properties of jute fibers via in situ synthesis,” Compos. Part A Appl. Sci. Manuf.,109, 368-375 (2018).

    Article  CAS  Google Scholar 

  25. R. Gu, B. V. Kokta, D. Michalkova, B. Dimzoski, I. Fortelny, M. Slouf, and Z. Krulis, “Characteristics of wood-plastic composites reinforced with organo-nanoclays,” J. Reinf. Plast. Comp., 29, No. 24, 3566-3586 (2010).

    Article  CAS  Google Scholar 

  26. X. Ye, H. Wang, K. Zheng, Z. Wu, Z. Haifeng, K. Tian, Z. Su, and X. Tian, “The interface designing and reinforced features of wood fiber/polypropylene composites: wood fiber adopting nano-zinc-oxide-coating via ion assembly,” Compos. Sci. Technol., 124, No. 1, 1-9 (2016).

    Article  CAS  Google Scholar 

  27. H. Wang, G. Xian, and H. Li, “Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite,” Compos. Part A Appl. Sci. Manuf., 76, 172-180 (2015).

    Article  CAS  Google Scholar 

  28. B. K. Deka and T. K. Maji, “Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite,” Compos. Part A Appl. Sci. Manuf., 42, 2117-2125 (2011).

    Article  Google Scholar 

  29. B. K. Deka and T. K. Maji, “Effect of silica nanopowder on the properties of wood flour/polymer composite,” Polym. Eng. Sci., 52, No. 7, 1516-1523 (2012).

    Article  CAS  Google Scholar 

  30. A. Hazarika and T. K. Maji, “Ultraviolet resistance and other physical properties of softwood polymer nanocomposites reinforced with ZnO nanoparticles and nanoclay,” Wood Mater. Sci. Eng., 12, No. 1, 24-39 (2017).

    Article  CAS  Google Scholar 

  31. A. Hamad and Al-Turaif, “Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin,” Prog. Org. Coat., 69, 241-246 (2010).

    Article  Google Scholar 

  32. M. ZR. Khan, S. K. Srivastava, and M. K. Gupta, “Hybrid wood particulates composites: mechanical and thermal properties,” Mater. Res. Express, 6,105323 (2019).

    Article  CAS  Google Scholar 

  33. N. Kumar, A. Singh, K. Debnath, and N. Kumar, “Water absorption and mechanical behaviour of borassus fruit fibrereinforced composites,” Emerg. Mater. Res., 9, No. 1, 10-17 (2020).

    CAS  Google Scholar 

  34. M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “Investigations of Surface micro topologies behaviour of hybrid wood composites,” Mater. Res. Express, 6, 105326 (2019).

    Article  CAS  Google Scholar 

  35. S. Srivastava and R. K. Tiwari, “Synthesis of epoxy-TiO2 nanocomposites: a study on sliding wear behavior, thermal and mechanical properties,” Int. J Polym. Mater., 61, pp. 999-1010 (2012).

    Article  CAS  Google Scholar 

  36. S. Nallusamy, “Characterization of epoxy composites with TiO2 additives and e-glass fibers as reinforcement agent,” J. Nano Res-Sw, 40, 99-104 (2016).

    Article  CAS  Google Scholar 

  37. S-Y. Lee, I-A. Kang, G-H. Doh, H-G. Yoon, B-D. Park, and Q. Wu, “Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effects of filler content and coupling treatment,” J. Thermoplast. Compos. Mater., 21, 209-223 (2008).

    Article  CAS  Google Scholar 

  38. M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “Water absorption and its effect on mechanical properties of hybrid wood particulates composites,” Mater. Res. Express, 6, No. 10, 105305 (2019).

    Article  CAS  Google Scholar 

  39. A. Viksne, A. K. Bledzki, L. Rence, and R. Berzina, “Water uptake and mechanical characteristics of wood fiberpolypropylene composites,” Mech. Compos. Mater., 42, No. 1, 73-82 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Head ACMS and the Head MSE Indian Institute Technology, Kanpur (U.P.), India, where all experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Gupta.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 2, pp. 351-364, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z., Srivastava, S.K. & Gupta, M.K. Characterization of TiO2 Microparticle-Blended Polymer-Based Hybrid Wood Particulate Composites. Mech Compos Mater 57, 247–256 (2021). https://doi.org/10.1007/s11029-021-09949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09949-y

Keywords

Navigation