Skip to main content

Advertisement

Log in

At the onset of bio-complexity: microscopic devils, molecular bio-motors, and computing cells

  • Statistical thermodynamics and chemical kinetics
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Nano scale motility, that is the hallmark of life, emerges when coordinated movements take over from molecular chaos. In biological world, at nanometric size, significant witnesses are present, starting from cellular traffic flows till the organized behaviors of complex molecular machines. Although their origins and evolution are still the objects of investigations, the understanding of physico-chemical mechanisms capable of extracting coordinated movements from the stochastic energy fluctuations of the surrounding liquid is improving. By accounting for the contribution due to the free energy supplied from the hydrolysis of ATP, information theory allows some meaningful in-deepments on processes and mechanisms that contribute to the increase in the complexity present in biological processes. The transfer of some engineering concepts to the biological cells shaped through a set of interacting components with functional, as well as structural relationships, evidences the presence of set-up similar to the ones conventional computers, in which the electronic circuits are able to manage logical expressions. The implications on the emergent synthetic biology are discussed, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

(Taken from Benoit Perthame, ENS Paris)

Fig. 13

(Taken from: Cohen W, A Computer Scientist’s Guide to Cell Biology: Travelogue from a Stranger in a Strange Land)

Fig. 14
Fig. 15

(Arranged from Gerd H. G. and Moe Berhens, “Biological Microprocessor, No. 7, April 2013)

Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

Molecular or particle diameter

\(D = (k_{{\text{B}}} T/3\pi \mu a)\) :

Diffusion coefficient

E :

Energy

Ex:

Exergy

F = U − TS :

Helmholtz free energy

G = H − TS :

Gibbs free energy

H :

Enthalpy

I :

Information

P :

Pressure

Pi:

Phosphoric acid

pi :

Probability

P(x,t):

Probability distribution function

S :

Entropy

t :

Time

T :

Temperature

u :

Fluid or particle velocity

U :

Internal energy, characteristic fluid velocity in Eq. (1)

V :

Potential energy

w(x n/x s):

Transition probability between the states n and s

\(\mu\) :

Viscosity

\(\rho\) :

Density

x,y,z :

Cartesian coordinates

\({\text{d}}r^{3} = {\text{d}}x{\text{d}}y{\text{d}}z\) :

Elementary volume in a Cartesian space

Re = ULρ/μ :

Reynolds number

δ(…):

Dirac delta function

\(\Phi\) :

Flux

\(\nabla\) :

Gradient

\(\nabla^{2} \equiv \nabla \cdot (\nabla )\) :

Laplacian

\(\beta = 1/k_{{\text{B}}} T\) :

Being kB the Boltzmann constant

References

  • Adami C (2012) The use of information theory in evolutionary biology. Ann N Y Acad Sci. 1256(49):65

    Google Scholar 

  • Adami C, Ofria C, Collier T (1997) Evolution of biological complexity. Proc Nat AcadSci USA 97:4463

    Google Scholar 

  • Astumian R (2007) Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. PhysChemChemPhys 9:5067

    CAS  Google Scholar 

  • Bray D (2009) Wetware, a computer in every cell. Yale University Press, London

    Google Scholar 

  • Bushev M (1994) Synergetics, chaos, order and self Organization. World Scientific Publishing, Singapore

    Google Scholar 

  • Carrà S (2017) Peculiarity and perspectives of catalytic reaction engineering Rend. FisAccLincei. https://doi.org/10.1007/s12210-017-0598-y

    Article  Google Scholar 

  • Carrà S (2018) Stepping stones to synthetic biology. Springer International Publishing, New York

    Google Scholar 

  • Carrà S (2020) Reaction kinetics: scientific passion or applicative tool? Rend Fis Acc Lincei. https://doi.org/10.1007/s12210-020-00884-z

  • Carroll S (2017) The big picture. DUTTON, New York

    Google Scholar 

  • Cercignani C (1998) Ludwig Boltzmann, the man who trusted atoms. Oxford University Press, Oxford

    Google Scholar 

  • Chaitin G (2007) Thinking about Godel and Turing: essays on complexity. World Scientific, Singapore

    Google Scholar 

  • Chaitin G (2012) Proving Darwin making biologic mathematic. Vintage, New York

    Google Scholar 

  • Chalub F (2002) Kinetics models for Chemotaxis and their Drift. Diffusion limits. https://www.researchgate.net/publication/225454489

  • Chaudhury S, Cherayil BJ (2006) Complex chemical kinetics in single enzyme molecules. J Chem Phys 125:024904

    Google Scholar 

  • Danchin A (2009) Bacteria as computers making computers. FEMS Microbiol Rev 33:3–26

    CAS  Google Scholar 

  • Davies P (2019) The demon in the machine. Penguin Random House, London

    Google Scholar 

  • Einstein A (1905) On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Annalen der Physik (in German) 322(8):549–560

    Google Scholar 

  • Erbas-Cakmak S (2015) Artificial molecular machines. Chem Rev 2015(115):10081–11020. https://doi.org/10.1021/acs.chemrev.5b00146

    Article  CAS  Google Scholar 

  • Falkowski PG (2015) Life’s engines. Princeton University Press, Princeton

    Google Scholar 

  • Flack J (2017) Life’s information Hierarchy, in Walker S.I. From matter to Life. Cambridge University Press, Cambridge

    Google Scholar 

  • Gell-Mann M (1994) The Quark and the Jaguar. Freeman and Company, New York

    Google Scholar 

  • Gentili PL (2018) The Fuzziness of the molecular world and its perspectives. Molecules 23:2074

    Google Scholar 

  • Gerd HG et al (2013) The biological microprocessor, or how to build a computer with biological parts. ComputStructBiotechnol J. https://doi.org/10.5936/csbj.201304003

    Article  Google Scholar 

  • Gerritsma E, Gaspard P (2010) Chemomechanical coupling and stochastic thermodynamics of the F1-ATPase molecular motor with an applied external torque. Biophys Rev Lett 5:163–208

    CAS  Google Scholar 

  • Hanggi P, Talkner P, Borkovec M (1990) Reaction-rate theory: fifty years after Kramers. Rev Modern Phys 62(2):251

    Google Scholar 

  • Hoffmann P (2012) Life’s Ratchet how molecular machines extract order. Basic Books, New York

    Google Scholar 

  • Hofstadter R (1979) Gödel, Escher, Bach: an eternal golden braid. Basic Books, New York

    Google Scholar 

  • Jablonsky J et al (2011) Modeling the Calvin-Benson cycle. BMC Syst Biol 5:18. http://www.biomedcentral.com/1752-0509/5/185.

  • Lan G, Sun SX (2012) Mechanochemical models of processive molecular motors. MolPhys 110:1017–1034

    CAS  Google Scholar 

  • Landau LD, Lifshitz EM (2009) Fluid mechanics. Butterworth, Oxford

    Google Scholar 

  • Landauer R (1975) Inadequacy of entropy derivatives in characterizing the steady state. Phys Rev A 18(8):636–638

    Google Scholar 

  • Lee SY et al (2019) A comprehensive metabolic map for production of bio-based chemicals. Nat Catal 2:18-33. www.nature.com/natcatal

  • Lovelock J (2019) Novacene. MIT Press, New York

    Google Scholar 

  • Machta J (1999) Entropy, information, and computation. Am J Phys 67(12):1074–1077

    Google Scholar 

  • Mayfield J (2013) The engine of complexity, evolution as computation. Columbia University Press, New York

    Google Scholar 

  • Maynard SJ, Szathmary E (1995) The major transition in evolution. Freeman, Oxford

    Google Scholar 

  • Mc Clare C (1971) Chemical machines, Maxwell’s demon and living organisms. J TheorBiol 30:1–34

    CAS  Google Scholar 

  • Morton O (2007) Eating the Sun. Fourth Estate, London

    Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45(1):3–11

    Google Scholar 

  • Rodnina M, Wintermayer W (2011) The ribosome as a molecular machine: the mechanism of tRNA–mRNA movement in translocation. BiochemSoc Trans 39:658–662. https://doi.org/10.1042/BST0390658

    Article  CAS  Google Scholar 

  • Saunders M, Voth G (2013) Coarse-graining method for computational biology. Annu Rev Biophys 42:73–93

    CAS  Google Scholar 

  • Schuster P (2016) Increase in complexity and information through molecular evolution. Entropy 18:397. https://doi.org/10.3390/e18110397

    Article  CAS  Google Scholar 

  • Sertorio L, Renda E (2009) Ecofisica. BollatiBoringhieri, Torino

    Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 379–423:623–656

    Google Scholar 

  • Simpson M et al. (2004) Engineering in the biological substrate: information processing in genetic circuits. In: Proceedings of the IEEE, Vol 92, No. 5

  • Sokolov A et al (2013) Numerical simulation of Chemotaxis models on stationary surfaces. Discrete ContinDynSyst B. https://doi.org/10.3934/dcdsb.2013.18.2689

    Article  Google Scholar 

  • Spirin A (2002) Ribosome as molecular machine. FEBS Lett 514:2–10

    CAS  Google Scholar 

  • Stephanopoulos G (1998) Metabolic engineering. Academic Press, New York

    Google Scholar 

  • Stratonovitch R (1992) Nonlinear non-equilibrium thermodynamics, Series in Synergetics. Springer, New York

    Google Scholar 

  • Vologodskii A (2006) Energy transformation in biological molecular motors. Phys Life Rev 3:119–132

    Google Scholar 

  • Wall G, Gong M (2001) Onexergy and sustainable development—part 1: conditions and concepts. ExergyInt J 1(3):128–145

    Google Scholar 

  • Wolpert D (2016) The free energy requirements of biological organisms; implications for evolution. Entropy 18:138. https://doi.org/10.3390/e18040138

    Article  Google Scholar 

  • Yang H-C, Ge Y-C, Su K-H, Chang C-C, Lin K-C, Aquilanti V, Kasai T (2021) Temperature effect on water dynamics in tetramer phosphofructokinase matrix and the super-Arrhenius respiration rate. Sci Reports 11:1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Carrà.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is the peer-reviewed version of a presentation.at the Conference Statistical thermodynamics and chemical kinetics: far away from equilibrium held at the Accademia Nazionale dei Lincei in Rome, 25–26 June 2019. Program and abstracts at the link Statistical Thermodynamics and Chemical—Manifestazione | Accademia Nazionale dei Lincei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrà, S. At the onset of bio-complexity: microscopic devils, molecular bio-motors, and computing cells. Rend. Fis. Acc. Lincei 32, 215–232 (2021). https://doi.org/10.1007/s12210-020-00971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00971-1

Keywords

Navigation