Skip to main content

Advertisement

Log in

An isoperimetric problem with a competing nonlocal singular term

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we investigate the minimization of a functional in which the usual perimeter is competing with a nonlocal singular term comparable (but not necessarily equal to) a fractional perimeter. The motivation for this problem is a cell motility model introduced in some previous work by the first author. We establish several facts about global minimizers with a volume constraint. In particular we prove that minimizers exist and are radially symmetric for small mass, while minimizers cannot be radially symmetric for large mass. For large mass, we prove that the minimizing sequences either split into smaller sets that drift to infinity or must develop intricate non-symmetrical shape. Finally, we connect these two alternatives to a related minimization problem for the optimal constant in a classical interpolation inequality (a Gagliardo–Nirenberg type inequality for fractional perimeter).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., De Philippis, G., Martinazzi, L.: Gamma-convergence of nonlocal perimeter functionals. Manuscr. Math. 134, 377–403 (2011)

    Article  MathSciNet  Google Scholar 

  2. Berendsen, J., Pagliari, V.: On the asymptotic behaviour of nonlocal perimeters. ESAIM Control Optim. Calc. Var. 25, 48 (2019)

    Article  MathSciNet  Google Scholar 

  3. Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95, 263–273 (1960)

    Article  MathSciNet  Google Scholar 

  4. Bonacini, M., Cristoferi, R.: Local and global minimality results for a nonlocal isoperimetric problem on \(\mathbb{R}^N\). SIAM J. Math. Anal. 46, 2310–2349 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal control and partial differential equations, pp. 439–455. IOS, Amsterdam (2001)

  6. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L., Valdinoci, E.: Regularity properties of nonlocal minimal surfaces via limiting arguments. Adv. Math. 248, 843–871 (2013)

    Article  MathSciNet  Google Scholar 

  8. Choksi, R., Muratov, C.B., Topaloglu, I.: An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Notices Am. Math. Soc. 64, 1275–1283 (2017)

    Article  MathSciNet  Google Scholar 

  9. Cucchi, A., Mellet, A., Meunier, N.: A Cahn-Hilliard model for cell motility. SIAM J. Math. Anal. 52(4), 3843–3880 (2020)

  10. Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15, 519–527 (2002)

    Article  MathSciNet  Google Scholar 

  11. Di Castro, A., Novaga, M., Ruffini, B., Valdinoci, E.: Nonlocal quantitative isoperimetric inequalities. Calc. Var. Partial Differ. Equ. 54, 2421–2464 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dipierro, S., Figalli, A., Palatucci, G., Valdinoci, E.: Asymptotics of the \(s\)-perimeter as \(s\searrow 0\). Discrete Contin. Dyn. Syst. 33, 2777–2790 (2013)

    Article  MathSciNet  Google Scholar 

  13. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York–Toronto–London (1953) (based, in part, on notes left by Harry Bateman)

  14. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)

    Article  MathSciNet  Google Scholar 

  15. Figalli, A., Valdinoci, E.: Regularity and Bernstein-type results for nonlocal minimal surfaces. J. Reine Angew. Math. 729, 263–273 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Frank, R.L., Lieb, E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47, 4436–4450 (2015)

    Article  MathSciNet  Google Scholar 

  17. Fuglede, B.: Stability in the isoperimetric problem for convex or nearly spherical domains in rn. Trans. Am. Math. Soc. 314, 619–638 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)

    Article  MathSciNet  Google Scholar 

  19. Glasner, K.: A diffuse interface approach to Hele–Shaw flow. Nonlinearity 16, 49–66 (2003)

    Article  MathSciNet  Google Scholar 

  20. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing nonlocal term I: the planar case. Commun. Pure Appl. Math. 66, 1129–1162 (2013)

    Article  MathSciNet  Google Scholar 

  21. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math. 67, 1974–1994 (2014)

    Article  MathSciNet  Google Scholar 

  22. Knüpfer, H., Muratov, C.B., Novaga, M.: Low density phases in a uniformly charged liquid. Commun. Math. Phys. 345, 141–183 (2016)

    Article  MathSciNet  Google Scholar 

  23. Mazón, J.M., Rossi, J.D., Toledo, J.: Nonlocal perimeter, curvature and minimal surfaces for measurable sets. J. Anal. Math. 138, 235–279 (2019)

    Article  MathSciNet  Google Scholar 

  24. Muratov, C.B., Novaga, M.: On well-posedness of variational models of charged drops. Proc. A. 472 (2016)

  25. Muratov, C.B., Novaga, M., Ruffini, B.: On equilibrium shape of charged flat drops. Commun. Pure Appl. Math. 71, 1049–1073 (2018)

    Article  MathSciNet  Google Scholar 

  26. Muratov, C.B., Simon, T.M.: A nonlocal isoperimetric problem with dipolar repulsion. Commun. Math. Phys. 372, 1059–1115 (2019)

    Article  MathSciNet  Google Scholar 

  27. Pegon, M.: Large mass minimizers for isoperimetric problems with integrable nonlocal potentials, (2020)

  28. Polya, G.: On the zeros of an integral function represented by Fourier’s integral. Messenger Math. 52, 185–188 (1923)

    MATH  Google Scholar 

  29. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, NJ (1971). Princeton Mathematical Series, No. 32

  30. Tamanini, I.: Boundaries of caccioppoli sets with Hölder–Continuois normal vector. Journal für die Reine und Angewandte Mathematik 334, 27–39 (1982)

    MATH  Google Scholar 

  31. Valdinoci, E.: A fractional framework for perimeters and phase transitions. Milan J. Math. 81, 1–23 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Mellet.

Additional information

Communicated by O. Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Antoine Mellet: Partially supported by NSF Grant DMS-2009236.

Appendices

A Proof of Proposition 1.1

First, we write

$$\begin{aligned} P_K(E)&= \int _{|z|\ge R} K(z) \int _{\mathbb {R}^n} |\chi _E(x)-\chi _E(x+z)|dx dz\\&\quad +\int _{|z|\le R} K(z) \int _{\mathbb {R}^n} |\chi _E(x)-\chi _E(x+z)|dx\, dz. \end{aligned}$$

Using the bound \( \int _{\mathbb {R}^n} |\chi _E(x)-\chi _E(x+z)| dx \le 2|E|\) in the first integral and \( \int _{\mathbb {R}^n} |\chi _E(x)-\chi _E(x+z)|dx \le |z| \int _{\mathbb {R}^n} |D\chi _E| \) in the second integral, we get:

$$\begin{aligned} P_K(E) \le 2|E| \int _{|z|\ge R} K(z) dz+ P(E) \int _{|z|\le R} |z| K(z) \, dz \le n \omega _n \left( 2|E| \frac{R^{-s}}{s}+ P(E) \frac{R^{1-s}}{1-s} \right) . \end{aligned}$$

Optimizing with respect to R by taking \(R=\frac{2|E|}{P(E)}\) yields the result.

B Proof of Lemma 5.4

It is equivalent to prove

$$\begin{aligned} \left| \int _{\partial B_1}{(\psi (1+\lambda )-\psi (1))d{\mathcal {H}}^{n-1}(x)}-P(B_1)\beta \lambda \right| \le \frac{C}{s(1-s)}P(B_1)r_0^{n-s}\lambda ^2. \end{aligned}$$
(B.1)

Using (5.9), we write

$$\begin{aligned} \int _{\partial B_1}{\psi (1+\lambda )d{\mathcal {H}}^{n-1}(x)}&=\frac{1}{2}\int _{\mathbb {R}^n}{\int _{\mathbb {R}^n}{\left| \chi _{B_{r_0}}(x)-\chi _{B_{r_0}}(x+\frac{z}{1+\lambda })\right| (1+\lambda )^{n}K(z)dz}dx}\\&=\frac{1}{2}(1+\lambda )^{n}\int _{\mathbb {R}^n}{\phi \left( \frac{z}{1+\lambda }\right) K(z)dz}, \end{aligned}$$

where we defined a radially symmetric function \( \phi (|z|):=\phi (z)=\int _{\mathbb {R}^n}|\chi _{B_{r_0}}(x)-\chi _{B_{r_0}}(x+z)|dx. \) Setting

$$\begin{aligned} F(\lambda ):=(1+\lambda )^{n}\int _{\mathbb {R}^n}{\phi \left( \frac{z}{1+\lambda }\right) K(z)dz}, \end{aligned}$$

which satisfies in particular, \( F(0)=P_K(B_{r_0})=\int _{\partial B_1}{\psi (1)d{\mathcal {H}}^{n-1}(x)}, \) we see that (B.1) is equivalent to showing that there exists \(\tilde{\beta }=P(B_1)\beta \in \mathbb {R}\) such that

$$\begin{aligned} |F(\lambda )-F(0)-\tilde{\beta }\lambda |<\frac{C}{s(1-s)}r_0^{n-s}\lambda ^2 \end{aligned}$$

for all \(|\lambda |<1/2\). Clearly, this holds if we take \(\tilde{\beta }=F'(0)\) and prove

$$\begin{aligned} |F'(0)|\le \frac{C}{s(1-s)}r_0^{n-s},\quad \sup _{|\lambda |<1/2}{|F''(\lambda )|}\le \frac{C}{s(1-s)}r_0^{n-s}. \end{aligned}$$

First, we note that for all \(0\le t\le 2r_0\), we have:

$$\begin{aligned} \phi (t)= & {} 2|B_{r_0}|-4\int _{t/2}^{r_0}{\omega _{n-1}(r_0^2-\tau ^2)^{\frac{n-1}{2}}d\tau }, \phi '(t) =4\omega _{n-1}\left( r_0^2-\frac{t^2}{4}\right) ^{\frac{n-1}{2}},\ \phi ''(t)\\= & {} -(n-1)\omega _{n-1}t\left( r_0^2-\frac{t^2}{4}\right) ^{\frac{n-3}{2}}, \end{aligned}$$

while when \(t>2r_0\), we find \(\phi (t)=2|B_{r_0}|\), \(\phi '(t)=0\) and \(\phi ''(t)=0\). Next, we compute:

$$\begin{aligned} F'(\lambda )&=n(1+\lambda )^{n-1}\int _{\mathbb {R}^n}{\phi \left( \frac{z}{1+\lambda }\right) K(z)dz} -(1+\lambda )^{n-2}\int _{\mathbb {R}^n}{\phi '\left( \frac{|z|}{1+\lambda }\right) |z|K(z)dz} \end{aligned}$$

which implies

$$\begin{aligned} \tilde{\beta }:=F'(0)&=n\int _{\mathbb {R}^n}{\phi (z)K(z)dz}-\int _{\mathbb {R}^n}{\phi '(|z|)|z|K(z)dz}\\&=nP_K(B_{r_0})-4P(B_1)\omega _{n-1}r_0^{n-s}\int _0^{2}{\left( 1-\frac{t^2}{4}\right) ^{\frac{n-1}{2}}t^n K(t)dt}. \end{aligned}$$

We deduce

$$\begin{aligned} |\beta |=\left| \frac{\tilde{\beta }}{P(B_1)}\right| \le \frac{C}{s(1-s)}r_0^{n-s}. \end{aligned}$$
(B.2)

Finally, we have

$$\begin{aligned} F''(\lambda )&=n(n-1)(1+\lambda )^{n-2}\int _{\mathbb {R}^n}{\phi \left( \frac{z}{1+\lambda }\right) K(z)dz} -(2n+2)(1+\lambda )^{n-3}\\&\qquad \int _{\mathbb {R}^n}{\phi '\left( \frac{|z|}{1+\lambda }\right) |z|K(z)dz}\\&\quad +(1+\lambda )^4\int _{\mathbb {R}^n}{\phi ''\left( \frac{|z|}{1+\lambda }\right) |z|^2K(z)dz}=J_1+J_2+J_3. \end{aligned}$$

When \(\lambda <1/2\), the first integral satisfies

$$\begin{aligned} |J_1|\le \frac{C}{(1+\lambda )^2}P_K(B_{(1+\lambda )r_0})\le CP_s(B_{(1+\lambda )r_0})\le \frac{C}{s(1-s)}r_0^{n-s}. \end{aligned}$$

For the second integral, we find

$$\begin{aligned} |J_2|&\le C\int _{0}^{2r_0(1+\lambda )}{t^{n-1}\phi '\left( \frac{t}{1+\lambda }\right) t K(t)dt}\le Cr_0^{n-s}\int _{0}^{2(1+\lambda )}{t^{-s}\left( 1-\frac{t^2}{4(1+\lambda )^2}\right) ^{\frac{n-1}{2}}dt}\\&\le \frac{C}{1-s}r_0^{n-s}, \end{aligned}$$

and the last integral is bounded by

$$\begin{aligned} |J_3|&\le C\int _{0}^{2r_0(1+\lambda )}{t\left( r_0^2-\frac{t^2}{4(1+\lambda )^2}\right) ^{\frac{n-3}{2}}t^2t^{-n-s}t^{n-1}dt}\\&=Cr_0^{n-s}\int _0^{2(1+\lambda )}{\left( 1-\frac{t}{2(1+\lambda )}\right) ^{\frac{n-3}{2}}\left( 1+\frac{t}{2(1+\lambda )}\right) ^{\frac{n-3}{2}}t^{2-s}dt}\le Cr_0^{n-s} \end{aligned}$$

We deduce \( \sup _{|\lambda |<1/2}{|F''(\lambda )|}\le \frac{C}{s(1-s)}r_0^{n-s} \) which complete the proof.

C Proof of Lemma 1.2

The result is likely known but since we could not find a reference for it, we provide here a short proof following the original argument of Polya [28] (see also Blumenthal-Getoor [3]).

Since K(x) is the solution of (1.6), we have

$$\begin{aligned} {\widehat{K}}(\xi ) = \int _{\mathbb {R}^n} e^{ix\cdot \xi } K(x)\, dx = \frac{1}{1+|\xi |^s} \end{aligned}$$

and we introduce the function k(x) such that \( {\widehat{k}}(\xi ) = \frac{e^{-|\xi |^{2 p}}}{1+|\xi |^s} \) for \(p\in {\mathbb {N}}\) with \(2p>n+s\). Since the function \(\displaystyle \xi \mapsto {\widehat{K}}(\xi ) - {\widehat{k}}(\xi )= \frac{1-e^{-|\xi |^{2p}}}{1+|\xi |^s}\) is \(C^{2p}\), its Fourier transform decays faster than \(|x|^{2p}\). Hence we only need to show that k(x) has the appropriate behavior as \(|x|\rightarrow \infty \).

Since \({\widehat{k}}(\xi )\) is radially symmetric, we can write (see for instance [29]):

$$\begin{aligned} k(x)&= \frac{1}{(2\pi )^{\frac{n}{2}}} \int _0^\infty {\widehat{k}}\left( t\right) \left( \frac{t}{|x|}\right) ^{\frac{n}{2} -1}J_{\frac{n}{2}-1}( |x| t)\, t \, dt\\&= \frac{|x|^{-n-s}}{(2\pi )^{\frac{n}{2}}} \int _0^\infty {\widehat{k}}\left( \frac{t}{ |x|}\right) |x|^{s} t^{\frac{n}{2}} J_{\frac{n}{2}-1}( t)\, dt \end{aligned}$$

where \(J_\nu \) denotes the Bessel function (of the first kind) of order \(\nu \) for which we recall that

$$\begin{aligned} \frac{d}{dt}\left( t^{\frac{n}{2}}J_{\frac{n}{2}}(t)\right) = t^{\frac{n}{2}}J_{\frac{n}{2}-1}(t). \end{aligned}$$

We can thus write

$$\begin{aligned} |x|^{n+s} k(x)&=\frac{1}{(2\pi )^{\frac{n}{2}}} \int _0^\infty {\widehat{k}}\left( \frac{t}{|x|}\right) |x|^{s} t^{\frac{n}{2}} J_{\frac{n}{2}-1}( t)\, dt\\&=\frac{1}{(2\pi )^{\frac{n}{2}}} \int _0^\infty {\widehat{k}}\left( \frac{t}{ |x|}\right) |x|^{s} \frac{d}{dt}(t^{\frac{n}{2}}J_{\frac{n}{2}}(t)) \, dt\\&=\frac{-1}{(2\pi )^{\frac{n}{2}}} \int _0^\infty {\widehat{k}} '\left( \frac{t}{ |x|}\right) |x|^{s-1} t^{\frac{n}{2}}J_{\frac{n}{2}}(t) \, dt\\&=\frac{-1}{(2\pi )^{\frac{n}{2}}} {\mathrm {Re}}\int _0^\infty {\widehat{k}} '\left( \frac{t}{|x|}\right) |x|^{s-1} t^{\frac{n}{2}}H^{(1)}_{\frac{n}{2}}(t) \, dt, \end{aligned}$$

where the Hankel functions of the first kind is defined by

$$\begin{aligned} H^{(1)}_\nu (x) = J_\nu (x)+iY_\nu (x). \end{aligned}$$

(where \(Y_\nu (x)\) is the Bessel functions of the second kind). Following [28], we now change the contour of integration so that it is a straight line \(L_\eta \) from 0 to \(\infty \) which makes a small positive angle \(\eta \) with the real axis. We recall the following asymptotic formula:

$$\begin{aligned} H^{(1)}_{\frac{n}{2}} \sim \sqrt{\frac{2}{\pi z}} e^{i\left( z-\frac{(n+1)\pi }{4}\right) }, \text{ for } |z|\rightarrow \infty , \qquad -\pi<\arg z<\pi . \end{aligned}$$

It follows that along the line \(L_\eta \), we have (for large |z|)

$$\begin{aligned} | H^{(1)}_{\frac{n}{2}}(z)| \le C \exp (-(\sin \eta ) t),\quad |{\widehat{k}} ' (z) |\le C \exp (-\sin (2p\eta )t^{2p}), \end{aligned}$$

so as long as \(2p\eta <\pi \) we can write (all integrals are convergent):

$$\begin{aligned} |x|^{n+s} k(x) = \frac{-1}{(2\pi )^{\frac{n}{2}}} {\mathrm {Re}}\int _{L_\eta } {\widehat{k}} '\left( \frac{z}{|x|}\right) |x|^{s-1} z^{\frac{n}{2}}H^{(1)}_{\frac{n}{2}}(z) \, dz, \end{aligned}$$

and since \({\widehat{k}}(r)\sim -sr^{s-1}\) when \(r\rightarrow 0^+\), we obtain:

$$\begin{aligned} \lim _{|x|\rightarrow \infty } |x|^{n+s} k(x) = \frac{s}{(2\pi )^\frac{n}{2}}\mathrm {Re}\int _{L_\eta } z^{\frac{n}{2}+s-1}H^{(1)}_{\frac{n}{2}}(z) \, dz. \end{aligned}$$

Finally, since the integral converge as long as \(\sin \eta >0\), we can rotate \(L_\eta \) until \(\eta = \pi /2\) to get:

$$\begin{aligned} \lim _{|x|\rightarrow \infty } |x|^{n+s} k(x)&= \frac{s}{(2\pi )^\frac{n}{2}}\mathrm {Re}\int _0^\infty i (it)^{\frac{n}{2}+s-1}H^{(1)}_{\frac{n}{2}}(it) \, dt \\&= \frac{s}{(2\pi )^\frac{n}{2}}\frac{2}{\pi }\mathrm {Re}\int _0^\infty i^{s-1} t^{\frac{n}{2}+s-1} K_{\frac{n}{2}}(t) \, dt, \end{aligned}$$

where the modified Bessel function of second kind \(K_{\frac{n}{2}}(t) = \frac{\pi }{2} i^{\frac{n}{2}+1}H^{(1)}_{\frac{n}{2}}(it)\) satisfies the formula (see [13])

$$\begin{aligned} \int _0^\infty t^{\frac{n}{2}+s-1} K_{\frac{n}{2}}(t) \, dt = 2^{\frac{n}{2} +s-2} \Gamma \left( \frac{n+s}{2}\right) \Gamma \left( \frac{s}{2}\right) . \end{aligned}$$

We deduce

$$\begin{aligned} \lim _{|x|\rightarrow \infty } |x|^{n+s} k(x)&= \frac{s 2^{s-1}}{\pi ^{\frac{n}{2}+1}} \sin \left( s\frac{\pi }{2} \right) \Gamma \left( \frac{n+s}{2}\right) \Gamma \left( \frac{s}{2}\right) \\&= \frac{s 2^{s-1}}{\pi ^{\frac{n}{2}}} \frac{\Gamma \left( \frac{n+s}{2}\right) \Gamma \left( \frac{s}{2}\right) }{ \Gamma \left( 1+\frac{s}{2}\right) |\Gamma \left( -\frac{s}{2}\right) |} = \frac{2^{s}}{\pi ^{\frac{n}{2}}} \frac{\Gamma \left( \frac{n+s}{2}\right) }{ |\Gamma \left( -\frac{s}{2}\right) |} \end{aligned}$$

where we used the fact that \(\Gamma (1+\frac{s}{2}) \Gamma (-\frac{s}{2}) = \frac{\pi }{-\sin (\frac{\pi }{2} s)}\) (Euler’s reflection formula).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellet, A., Wu, Y. An isoperimetric problem with a competing nonlocal singular term. Calc. Var. 60, 106 (2021). https://doi.org/10.1007/s00526-021-01969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01969-9

Keywords

Mathematics Subject Classification

Navigation