Skip to main content
Log in

LET-dependent model of single-event effects in MOSFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we simulate the electrical characteristics of the n-type metal-oxide-semiconductor (NMOS) transistor in a 65-nm complementary metal-oxide-semiconductor (CMOS) inverter under the actions of heavy ions with different linear energy transfers (LET). We analyze the influence of incident ions with different LETs on a device using technology computer-aided design (TCAD) software, and aim to establish an HSPICE sub-circuit model containing the relationship between the electrical properties of a device and the LET of an incident ion for circuit-level HSPICE simulation. Based on the SEE funnel mechanism, we propose an analytical model to describe the relationship between the charge collected by the NMOS drain and the LET of the incident ion, and build an HSPICE model based on this analytical model. With such a model, the influence of incident ions with different circuit-level LETs can be determined from HSPICE simulation. In addition, good agreement with simulation results is reached, proving the reasonableness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Autran, J.L., Glorieux, M., Munteanu, D., Clerc, S., Gasiot, G., Roche, P.: Particle Monte Carlo modeling of single-event transient current and charge collection in integrated circuits. Microelectron. Reliab. 54, 2278–2283 (2014)

    Article  Google Scholar 

  2. Sterpone, L., Du, B., Azimi, S.: Radiation-induced single event transients modeling and testing on nanometric flash-based technologies. Microelectron. Reliab. 55, 2087–2091 (2015)

    Article  Google Scholar 

  3. Ferlet-Cavrois, V., Massengill, L.W., Gouker, P.: Single event transients in digital CMOS—a review. IEEE Trans. Nucl. Sci. 60(3), 1767–1790 (2013)

    Article  Google Scholar 

  4. Zhang, Z., Liu, J., Hou, M., Gu, S., Liu, T., Zhao, F., Geng, C., Xi, K., Sun, Y., Yao, H., Luo, J., Duan, J., Mo, D., Liu, G., Han, Z.: Investigation of threshold ion range for accurate single event upset measurements in both SOI and bulk technologies. IEEE Trans. Nucl. Sci. 61(3), 1459–1467 (2014)

    Article  Google Scholar 

  5. Chen, C.-H., Knag, P., Zhang, Z.: Characterization of heavy-ion-induced single-event effects in 65 nm bulk CMOS ASIC test chips. IEEE Trans. Nucl. Sci. 61(5), 2694–2701 (2014)

    Article  Google Scholar 

  6. Chen, Y.: Minghua Tang study on single event effect mechanism and hardened techniques of field effect transistor. Xiangtan University, Hunan (2016)

    Google Scholar 

  7. Qin, J., Chen, S., Guo, C., Du, Y.: Simulation study of the single-event effects sensitivity in nanoscale CMOS for body-biasing circuits. IEEE Trans. Dev. Mater. Reliab. 14(2), 639–644 (2014)

    Article  Google Scholar 

  8. He, Y.B., Chen, S.M.: Impact of circuit placement on single event transients in 65 nm bulk CMOS technology. IEEE Trans. Nucl. Sci. 59(6), 2772–2777 (2012)

    Article  Google Scholar 

  9. Heidel, D.F., Rodbell, K.P., Oldiges, P., Gordon, M.S., Tang, H.H.K., Cannon, E.H., Plettner, C.: Single-event-upset critical charge measurements and modeling of 65 nm silicon-on-insulator latches and memory cells. IEEE Trans NuclSci 53(6), 3512–3517 (2006)

    Google Scholar 

  10. Osowski, A.J.K., Oldiges, P., Williams, R.Q., Solomon, P.M.: Modeling single-event upsets in 65-nm silicon-on-insulator semiconductor devices. IEEE Trans. Nucl. Sci. 53(6), 3321–3328 (2006)

    Article  Google Scholar 

  11. Balasubramanian, A., Fleming, P.R., Bhuva, B.L., Amusan, O.A., Massengill, L.W.: Effects of random dopant fluctuations (RDF) on the single event vulnerability of 90 and 65 nm CMOS technologies. IEEE Trans. Nucl. Sci. 54(6), 2400–2406 (2007)

    Article  Google Scholar 

  12. Wissel, L., Heidel, D.F., Gordon, M.S., Rodbell, K.P., Stawiasz, K., Cannon, E.H.: Flip-flop upsets from single-event-transients in 65 nm clock circuits. IEEE Trans. Nucl. Sci. 56(6), 3145–3151 (2009)

    Article  Google Scholar 

  13. Zhao, Y., Wang, L., Yue, S., Sun, Y., Wang, D., Liu, L., Liu, J., Wang, H.: Single event effect and its hardening technique in nano-scale CMOS integrated circuits. Acta Electron. Sin. 46(10), 2511–2518 (2018)

    Google Scholar 

  14. Liu, J., Wang, Y., Chen, G., Li, R., Li, Y., Fu, D.: Modeling of single event pulse with VerilogA: implementation and application. In: Nanoelectronics Conference, pp. 1–2 (2016)

  15. Privat, A., Clark, L.T.: Simple and accurate single event charge collection macro modeling for circuit simulation. In: IEEE International Symposium on Circuits and Systems, pp. 1858–1861 (2015)

  16. Black, D.A., Robinson, W.H., Wilcox, I.Z., Limbrick, D.B., Black, J.D.: Modeling of single event transients with dual double-exponential current sources: implications for logic cell characterization. IEEE Trans. Nucl. Sci. 62(4), 1540–1549 (2015)

    Article  Google Scholar 

  17. MacSweeney, D., McCarthy, K.G., Mathewson, A., Mason, B.: A SPICE compatible subcircuit model for lateral bipolar transistors in a CMOS process. IEEE Trans. Nucl. Sci. 45(9), 1978–1984 (1998)

    Google Scholar 

  18. Kauppila, J.S.: Layout-aware modeling and analysis methodologies for transient radiation effects on integrated circuit electronics. Graduate School of Vanderbilt University, Nashville, Tennessee (2015)

  19. Geng, C., Liu, J.: Modeling and Evaluating the Single Event Upset by Theoretical and Computational Simulation in Micro/Nano Scale SRAMs. The University of Chinese Academy of Sciences, Lanzhou (2014)

    Google Scholar 

  20. VisualTCAD 1.7.2: VisualTCAD User’s Guide Cogenda Pte Ltd. Su Zhou, China (2017)

  21. Laux, S.E., Hess, K.: Revisiting the analytic theory of pn junction impedance: improvements guided by computer simulation leading to a new equivalent circuit. IEEE Trans. Electron. Dev. 46(2), 396–412 (1999)

    Article  Google Scholar 

  22. Yi, T., Liu, Y., Yang, Y.: A study of PN junction diffusion capacitance of MOSFET in presence of single event transient. J. Electron. Test. 33(6), 769–773 (2017)

    Article  Google Scholar 

  23. HSPICE User Guide: Basic Simulation and Analysis. Synopsys, California (2013)

    Google Scholar 

  24. Keith, W.: Golke determination of funnel length from cross section versus LET measurements. IEEE Trans. Nucl. Sci. 40(6), 1910–1917 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Defense Foundation of China. The authors are grateful for the software support provided by Cogenda Pte Ltd.

Funding

Project supported by National Defense Foundation of China (No. 41424050607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Yi, T., Liu, Y. et al. LET-dependent model of single-event effects in MOSFETs. J Comput Electron 20, 1496–1503 (2021). https://doi.org/10.1007/s10825-021-01713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01713-8

Keywords

Navigation