Skip to main content
Log in

Effects of Orientation and Temperature on the Tensile Strength of Pristine and Defective Bi-Layer Graphene Sheet – A Molecular Dynamics Study

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations with adaptive intermolecular reactive empirical bond order (AIREBO) potential were carried out to study the effect of temperature and orientation on the tensile strength of pristine and defective bilayer graphene (BLG) sheet. Results obtained reveal that the fall in tensile strength of pristine AA stacked BLG due to the presence of vacancy is significant at room temperature (300 K) but decreases at higher temperature (1073 K). Interestingly, this phenomenon reverses in case of AB stacked BLG, wherein the percentage fall in strength at higher temperature due to defect is more than that at room temperature. In order to understand these discrepancies in the results obtained, three case studies were conducted, and the results obtained suggested that when defects are present in armchair direction, this phenomenon occurs. The study also reveals that in case of AB stacked BLG, zigzag direction is more defect tolerant at room and high temperatures. Interestingly, variation of tensile strength due to the orientation is in good agreement with projections from potential energy concepts and theoretical calculations. We envisage that the study will provide useful information to the device engineers for the optimisation of the mechanical properties and convenient structural adaptation of bilayer graphene while working at wide range of temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. R. Dreyer, R. S. Ruoff, C. W. Bielawski, From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew. Chem., Int. Ed. 49, 9336–9344, (2010).

  2. M. I. Katsnelson, Graphene: Carbon in Two Dimensions. Materials Today, 10, 2—27, (2006), https://doi.org/https://doi.org/10.1016/S1369-7021(06)71788-6.

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666–669, (2004), DOI: https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  4. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature 438, 201–204, (2005), DOI: https://doi.org/10.1038/nature04235

    Article  CAS  Google Scholar 

  5. C. H Yeh, Y. W. Lain, Y. C. Chiu, C. H. Liao, D. R. Moyano, S. S. Hsu, and P. W. Chiu, Gigahertz flexible graphene transistors for microwave integrated circuits, ACS Nano 8 (8), 7663, (2014), doi: https://doi.org/10.1021/nn5036087.

    Article  CAS  Google Scholar 

  6. K. S. Novoselov, V. I. Fal'ko , L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, A roadmap for graphene, Nature 490, 192, (2012), doi:https://doi.org/10.1038/nature11458.

    Article  CAS  Google Scholar 

  7. A. K. Geim, K. S. Novoselov, The Rise of Graphene, Nat. Mater., 6, 183–191, (2007), DOI: https://doi.org/10.1038/nmat1849 .

    Article  CAS  Google Scholar 

  8. J. W. Kang, H. W. Kim, K. S. Kim, J. H. Lee, Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator, Current Applied Physics13 (4), 789, (2013), https://doi.org/https://doi.org/10.1016/j.cap.2012.12.007.

  9. A. A. Balandin, S.Ghosh, W.Bao, I.Calizo, D.Teweldebrhan, F. Miao and C. N. Lau,Superior thermal conductivity of single-layer graphene, Nano Lett. 8, 902–7, (2008), DOI: https://doi.org/10.1021/nl0731872.

    Article  CAS  Google Scholar 

  10. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. S. Zhu, and T. Li, “Wrinkling Instability of Graphene on Substrate-Supported Nanoparticles,” ASME J. Appl. Mech., 81(6), 061008, (2014), doi: https://doi.org/10.1115/1.4026638.

    Article  CAS  Google Scholar 

  11. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321, 385,(2008), doi: https://doi.org/10.1126/science.1157996.

    Article  CAS  Google Scholar 

  12. I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol. B 25, 2558, (2007), DOI: https://doi.org/10.1116/1.2789446.

    Article  CAS  Google Scholar 

  13. SanghamitraDebroy, V. Pavan Kumar Miriyala, K. VijayaSekhar, Swati Ghosh Acharyya, Amit Acharyya, Graphene heals thy cracks, Computational Material Science 109, (2015), 84, http://dx.doi.org/https://doi.org/10.1016/j.commatsci.2015.05.025

    Article  CAS  Google Scholar 

  14. M. A. N. Dewapriya and R. K. N. D. Rajapaske, Molecular Dynamics Simulations and Continuum Modeling of Temperature and Strain Rate Dependent Fracture Strength of Graphene With Vacancy Defects, J. Appl. Mech. 81(8), 081010, (2014), doi: https://doi.org/10.1115/1.4027681.

    Article  CAS  Google Scholar 

  15. K. VijayaSekhar, SanghamitraDebroy, V. Pavan Kumar Miriyala, Swati Ghosh Acharyya, and Amit Acharyya, Self-healing phenomena of graphene: potential and applications, Open Phys. 14, 364, (2016), https://doi.org/https://doi.org/10.1515/phys-2016-0040.

  16. A. Lohrasebi, M. Amini, and M. Neek-Amal, The effects of temperature and vacancies on dynamics of crack in graphene sheet, AIP ADVANCES 4, 057113 (2014), http://dx.doi.org/https://doi.org/10.1063/1.4874296F. Banhart, J. Kotakoski, A. V. Krasheninnikov, Structural Defects in Graphene, ACS Nano 5 (1), 26-41, (2011), DOI: https://doi.org/10.1021/nn102598m.

  17. T. H. Fang, Z. W. Lee, https://www.sciencedirect.com/science/article/pii/S1567173917301955 - !W. J. Chang, Molecular dynamics study of the shear strength and fracture behavior of nanoporous graphene membranes, Current Applied Physics17 (10), 1323, (2017), https://doi.org/https://doi.org/10.1016/j.cap.2017.07.003

  18. E. Stolyarova, D. Stolyarov, K. Bolotin, S. Ryu, L. Liuet al, . Observation of graphene bubbles and effective mass transport under graphene films,Nano Lett. 9, 332,(2009),DOI: https://doi.org/10.1021/nl803087x.

  19. J. Scott Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia,et al. Impermeable atomic membranes from graphene sheets,Nano Lett. 8, 2458 (2008), DOI: https://doi.org/10.1021/nl801457b.

  20. N. T. Kirkland, T. Schiller,N. Medhekar, and N.Birbilis, Exploring graphene as a corrosion protection barrier,Corrosion Science 56,1–4, (2012), https://doi.org/https://doi.org/10.1016/j.corsci.2011.12.003.

    Article  CAS  Google Scholar 

  21. S. Chen, L. Brown, M. Levendorf, W. Cai, S. Y. Juet al., Oxidation resistance of graphene-coated Cu and Cu/Ni alloy,ACS Nano 5, 1321–7, (2011),DOI: https://doi.org/10.1021/nn103028d.

    Article  CAS  Google Scholar 

  22. D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, andK. I. Bolotin,Graphene: corrosion-inhibiting coating, ACS Nano 6,1102, (2012), DOI: https://doi.org/10.1021/nn203507y.

  23. M. Schriver, W. Regan, W. J. Gannett, A. M. Zaniewski, M. F. Crommieet al., Graphene as a long-term metal oxidation barrier: worse than nothing,ACS Nano 7, 5763–8, (2013),DOI: https://doi.org/10.1021/nn4014356.

    Article  CAS  Google Scholar 

  24. F. Zhou, Z. Li, G. J. Shenoy, L. Li, andH. Liu,Enhanced room-temperature corrosion of copper in the presence of graphene,ACSNano 7, 6939, (2013), DOI: https://doi.org/10.1021/nn402150t

  25. Y. P. Hsieh, M. Hofmann, K. W. Chang, J. G. Jhu, Y. Y. Li et. Al., Complete Corrosion Inhibition through Graphene Defect Passivation,ACS Nano 1,443, (2013), DOI: https://doi.org/10.1021/nn404756q.

  26. A. Krishnamurthy, V. Gadhamshetty, R. Mukherjee, Z. Chen, W. Ren et.al., Passivation of microbial corrosion using a graphene coating, Carbon 56, 45–49, (2013), https://doi.org/https://doi.org/10.1016/j.carbon.2012.12.060.

    Article  CAS  Google Scholar 

  27. M. Topsakal, H. Sahin, and S. Ciraci, Graphene coatings: An efficient protection from oxidation, Phys. Rev. B 85, 155445, (2012), DOI:https://doi.org/https://doi.org/10.1103/PhysRevB.85.155445

    Article  CAS  Google Scholar 

  28. SanghamitraDebroy, V. Pavan Kumar Miriyala, K. VijayaSekhar, Swati GhoshAcharyya and AmitAcharyya, Self healing nature of BLG, Superlattices and Microstructures 96, 26-35, (2016), http://dx.doi.org/https://doi.org/10.1016/j.spmi.2016.05.010

  29. Y.Y. Zhang, C.M. Wang, Y. Cheng and Y. Xiang, Mechanical properties of bilayer graphene sheets coupled by sp3 bonding, Carbon 49, 4511, (2011), http://dx.doi.org/https://doi.org/10.1016/j.carbon.2011.06.058.

    Article  CAS  Google Scholar 

  30. L. Wang and Q. Zhang, Elastic behavior of bilayer graphene under in-plane loadings, Current Applied Physics 12 (4), 1173-1177, (2012), https://doi.org/https://doi.org/10.1016/j.cap.2012.02.043.

    Article  Google Scholar 

  31. SanghamitraDebroy, V. Pavan Kumar Miriyala, K. VijayaSekhar, Swati Ghosh Acharyya, Amit Acharyya, Synergistic effect of temperature and point defect on the mechanical properties of single layer and bi-layer graphene, Superlattices and Microstructures 110, 205-214 (2017), https://doi.org/https://doi.org/10.1016/j.spmi.2017.08.040

  32. K. Ulman and S. Narasimhan, Point defects in twisted BLG: A density functional theory study, Phys. Rev. B 89, 245429, (2014), https://doi.org/ https://doi.org/10.1103/PhysRevB.89.245429

    Article  CAS  Google Scholar 

  33. A. Vuong, T. Trevethan, C. D. Latham, C. P. Ewels, D. Erbahar, P. R. Briddon, M. J. Rayson and M. I. Heggie, Interlayer vacancy defects in AA-stacked BLG: density functional theory predictions, Journal of Physics: Condensed Matter 29 (15), 155304, (2017), doi: https://doi.org/10.1088/1361-648X/aa5f93.

    Article  CAS  Google Scholar 

  34. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19, http://dx.doi.org/https://doi.org/10.1006/jcph.1995.1039.

    Article  CAS  Google Scholar 

  35. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472, http://dx.doi.org/https://doi.org/10.1063/1.481208.

    Article  CAS  Google Scholar 

  36. J. E. Lennard-Jones, On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature, Proc. Roy. Soc. Lond. A 106, 441, (1924), http://dx.doi.org/https://doi.org/10.1098/rspa.1924.0081.

  37. Y. Hu and B. Wang,Vibrational stability of graphene, AIP Advances 3, 052101 (2013), https://doi.org/https://doi.org/10.1063/1.4804244.

    Article  CAS  Google Scholar 

  38. M. A. N. Dewapriya , R. K. N. D. Rajapakse, Continuum Modeling of Temperature and Strain Rate Dependent Fracture Strength of Graphene With Vacancy Defects, J. Appl. Mech. Aug 2014, 81(8): 081010 (9 pages), https://doi.org/https://doi.org/10.1115/1.4027681

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Acharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debroy, S., Acharyya, S.G. & Acharyya, A. Effects of Orientation and Temperature on the Tensile Strength of Pristine and Defective Bi-Layer Graphene Sheet – A Molecular Dynamics Study. Trans Indian Inst Met 74, 1729–1739 (2021). https://doi.org/10.1007/s12666-021-02258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02258-x

Keywords

Navigation