Skip to main content
Log in

On the global convergence of the block Jacobi method for the positive definite generalized eigenvalue problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The paper proves the global convergence of a general block Jacobi method for the generalized eigenvalue problem \(\mathbf {A}x=\lambda \mathbf {B}x\) with symmetric matrices \(\mathbf {A}\), \(\mathbf {B}\) such that \(\mathbf {B}\) is positive definite. The proof is made for a large class of generalized serial strategies that includes important serial and parallel strategies. The sequence of matrix pairs generated by the block method converges to \((\varvec{\varLambda } , \mathbf {I})\) where \(\varvec{\varLambda }\) is a diagonal matrix of the eigenvalues of the initial matrix pair \((\mathbf {A},\mathbf {B})\) and \(\mathbf {I}\) is the identity matrix. First, the convergence to diagonal form is proved. After that several conditions are imposed to ensure the global convergence of the block method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hari, V., Begović Kovač, E.: Convergence of the cyclic and quasi-cyclic block Jacobi methods. Electron. Trans. Numer. Anal. 46, 107–147 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Demmel, W.J., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13, 1204–1245 (1992)

    Article  MathSciNet  Google Scholar 

  3. Slapničar, I.: Accurate symmetric eigenreduction by a Jacobi method. Ph.D. thesis, University of Hagen (1992)

  4. Drmač, Z.: Implementation of Jacobi rotations for accurate singular value computation in floating-point arithmetic. SIAM J. Sci. Stat. Comp. 18(4), 1200–1222 (1997)

    Article  MathSciNet  Google Scholar 

  5. Demmel, W.J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299, 21–80 (1999)

    Article  MathSciNet  Google Scholar 

  6. Slapničar, I.: Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD. Linear Algebra Appl. 358, 387–424 (2002)

    Article  MathSciNet  Google Scholar 

  7. Dopico, F.M., Molera, J.M., Moro, J.: An orthogonal high relative accuracy algorithm for the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 25(2), 301–351 (2003)

    Article  MathSciNet  Google Scholar 

  8. Matejaš, J.: Accuracy of the Jacobi method on scaled diagonally dominant symmetric matrices. SIAM J. Matrix Anal. Appl. 31(1), 133–153 (2009)

    Article  MathSciNet  Google Scholar 

  9. Matejaš, J., Hari, V.: On high relative accuracy of the Kogbetliantz method. Linear Algebra Appl. 464, 100–129 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hari, V.: Globally convergent Jacobi methods for positive definite matrix pairs. Numer. Algor. 79(1), 221–249 (2018). https://doi.org/10.1007/s11075-017-0435-5

    Article  MathSciNet  MATH  Google Scholar 

  11. de Rijk, P.P.M.: A one-sided Jacobi algorithm for computing the singular-value decomposition on a vector computer. SIAM J. Sci. Stat. Comp. 10(2), 359–371 (1989)

    Article  MathSciNet  Google Scholar 

  12. Sameh, A.H.: On Jacobi and Jacobi-like algorithms for parallel computer. Math. Comp. 25, 579–590 (1971)

    Article  MathSciNet  Google Scholar 

  13. Hari, V., Veselić, K.: On Jacobi methods for singular value decompositions. SIAM J. Sci. Stat. Comput. 8(5), 741–754 (1987)

    Article  MathSciNet  Google Scholar 

  14. Eberlein, P.J., Park, H.: Efficient implementation of Jacobi algorithms and Jacobi sets on distributed memory architectures. J. Parallel Distrib. Comput. 8, 358–366 (1990)

    Article  Google Scholar 

  15. Hari, V., Zadelj-Martić, V.: Parallelizing the Kogbetliantz method: a first attempt. JNAIAM 2(1–2), 49–66 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Drmač, Z.: A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algorithm. IMA J. Numer. Anal. 19, 191–213 (1999)

    Article  MathSciNet  Google Scholar 

  17. Hari, V.: Accelerating the SVD block-Jacobi method. Computing 75, 27–53 (2005)

    Article  MathSciNet  Google Scholar 

  18. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm I. SIAM J. Matrix Anal. Appl. 29(4), 1322–1342 (2007)

    Article  MathSciNet  Google Scholar 

  19. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm II. SIAM J. Matrix Anal. Appl. 29(4), 1343–1362 (2007)

    Article  MathSciNet  Google Scholar 

  20. Bečka, M., Okša, G., Vajtersic, M.: Parallel Block-Jacobi SVD Methods. In: Berry, M., et al. (eds.) High-Performance Scientific Computing, pp. 185–197. Springer, London (2012)

    Chapter  Google Scholar 

  21. Bečka, M., Okša, G., Vajtersic, M.: New dynamic orderings for the parallel one-sided block-Jacobi SVD algorithm. Parallel Process. Lett. 25(2), 1–19 (2015)

    Article  MathSciNet  Google Scholar 

  22. Novaković, J., Singer, S., Singer, S.: Blocking and parallelization of the Hari-Zimmermann variant of the Falk-Langemeyer algorithm for the generalized SVD. Parallel Comput. 49, 136–152 (2015)

    Article  MathSciNet  Google Scholar 

  23. Novaković, J., Singer, S.: Implicit Hari-Zimmermann algorithm for the generalized SVD on the GPUs. Int. J. High. Perform. Comput. Appl. 35(2), 170–205 (2021). https://doi.org/10.1177/1094342020972772

    Article  Google Scholar 

  24. Singer, S., Di Napoli, E., Novaković, V., Čaklović, G.: The LAPW method with eigendecomposition based on the Hari-Zimmermann generalized hyperbolic SVD. SIAM J. Sci. Comput. 42(5), C265–C293 (2020). https://doi.org/10.1137/19M1277813

    Article  MathSciNet  MATH  Google Scholar 

  25. Hari, V.: Convergence of a block-oriented quasi-cyclic Jacobi method. SIAM J. Matrix Anal. Appl. 29(2), 349–369 (2007)

    Article  MathSciNet  Google Scholar 

  26. Drmač, Z.: A global convergence proof for cyclic Jacobi methods with block rotations. SIAM J. Matrix Anal. Appl. 31(3), 1329–1350 (2009)

    Article  MathSciNet  Google Scholar 

  27. Hari, V., Singer, S., Singer, S.: Block-oriented \(J\)-Jacobi methods for hermitian matrices. Lin. Alg. and Its Appl. 433(8–10), 1491–1512 (2010)

    Article  MathSciNet  Google Scholar 

  28. Bujanović, Z.: Drmač, Z: A contribution to the theory and practice of the block Kogbetliantz method for computing the SVD. BIT 52(4), 827–849 (2012)

    Article  MathSciNet  Google Scholar 

  29. Hari, V., Singer, S., Singer, S.: Full block \(J\)-Jacobi method for hermitian matrices. Linear Algebra Appl. 444, 1–27 (2014)

    Article  MathSciNet  Google Scholar 

  30. Hari, V.: Convergence to diagonal form of block Jacobi-type methods. Numer. Math. 129(3), 449–481 (2015)

    Article  MathSciNet  Google Scholar 

  31. Okša, G., Yamamoto, Y., Vajteršic, M.: Asymptotic quadratic convergence of the serial block-Jacobi EVD algorithm for Hermitian matrices. Numer. Math. 136(4), 1071–1095 (2017)

    Article  MathSciNet  Google Scholar 

  32. Hansen, E.R.: On cyclic Jacobi methods. SIAM J. Appl. Math. 11, 449–459 (1963)

    Article  MathSciNet  Google Scholar 

  33. Luk, F., Park, H.: On the equivalence and convergence of parallel Jacobi SVD algorithms. IEEE Tran. Comp. 38(6), 806–811 (1989)

    Article  Google Scholar 

  34. Luk, F., Park, H.: On parallel Jacobi orderings. SIAM J. Sci. Stat. Comput. 10, 18–26 (1989)

    Article  MathSciNet  Google Scholar 

  35. Shroff, G., Schreiber, R.: On the convergence of the cyclic Jacobi method for parallel block orderings. SIAM J. Matrix Anal. Appl. 10, 326–346 (1989)

    Article  MathSciNet  Google Scholar 

  36. van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14(1), 14–23 (1969)

    Article  MathSciNet  Google Scholar 

  37. Drmač, Z.: A Tangent Algorithm for Computing the Generalized Singular Value Decomposition. SIAM J. Numer. Anal. 35(5), 1804–1832 (1998)

    Article  MathSciNet  Google Scholar 

  38. Falk, S., Langemeyer, P.: Das Jacobische Rotations-Verfahren für reel symmetrische Matrizen-Paare I. II. Elektronische Datenverarbeitung 7, 30–34 (1960)

    MATH  Google Scholar 

  39. Slapničar, I., Hari, V.: On the quadratic convergence of the Falk-Langemeyer method for definite matrix pairs. SIAM J. Matrix Anal. Appl. 12(1), 84–114 (1991)

    Article  MathSciNet  Google Scholar 

  40. Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Trans. Am. Math. Soc. 94, 1–23 (1960)

    Article  MathSciNet  Google Scholar 

  41. Eberlein, P.J.: A Jacobi method for automatic computation of eigenvalues and eigenvectors of an arbitrary matrix. Siam J. 10, 74–88 (1962)

    MathSciNet  MATH  Google Scholar 

  42. Eberlein, P.J., Boothroyd, J.: Solution to the eigenproblem by a norm-reducing Jacobi-type method. Numer. Math. 11, 1–12 (1968)

    Article  Google Scholar 

  43. Hari, V., Begović Kovač, E.: On the convergence of complex Jacobi methods. Linear Multilinear Algebra 69(3), 489–514 (2019). https://doi.org/10.1080/03081087.2019.1604622

    Article  MathSciNet  MATH  Google Scholar 

  44. Hari, V.: On pairs of almost diagonal matrices. Linear Algebra Appl. 148, 193–223 (1991)

    Article  MathSciNet  Google Scholar 

  45. Hari, V.: On cyclic Jacobi methods for the positive definite generalized eigenvalue problem. Ph.D.  thesis, University of Hagen (1984)

  46. Mascarenhas, W.: On the convergence of the Jacobi method for arbitrary orderings. SIAM J. Matrix Anal. Appl. 16(4), 1197–1206 (1995)

    Article  MathSciNet  Google Scholar 

  47. Hari, V.: On the global convergence of the complex HZ method. SIAM J. Matrix Anal. Appl. 40(4), 1291–1310 (2019). https://doi.org/10.1137/19M1265594

  48. Hari, V.: Complex Cholesky–Jacobi algorithm for PGEP. AIP Conf. Proc. 2116, 450011 (2019). https://doi.org/10.1063/1.5114478

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to anonymous referees and editor Raf Vandebril for very helpful comments, including a suggestion on how to organize and improve the paper. He is thankful to Sanja Singer for reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vjeran Hari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been fully supported by Croatian Science Foundation under the project IP-09-2014-3670.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari, V. On the global convergence of the block Jacobi method for the positive definite generalized eigenvalue problem. Calcolo 58, 24 (2021). https://doi.org/10.1007/s10092-021-00415-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-021-00415-8

Keywords

Mathematics Subject Classification

Navigation