Skip to main content
Log in

Zero-exponent Limit to the Extended Chaplygin Gas Equations with Friction

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The exact solutions to the Riemann problem for an inhomogeneous extended Chaplygin gas equations with friction are constructed explicitly. Compared to the homogeneous system, the Riemann solutions for the inhomogeneous one are no longer self-similar. Then, as the two exponents vanish wholly or partly, two kinds of occurrence mechanism on the phenomenon of concentration and the formation of delta shock waves are identified and investigated. It is rigorously proved that as the pressure tends to a constant, the Riemann solutions of the inhomogeneous extended Chaplygin gas equations converge to those of the zero-pressure flow with a body force, while as the pressure approaches some special generalized Chaplygin gas, the Riemann solutions of the inhomogeneous extended Chaplygin gas equations tend to those of the generalized Chaplygin gas equations with the same source term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benaoum, H.B.: Accelerated universe from modified Chaplygin gas and tachyonic fluid, arXiv:hep-th/0205140

  2. Brenier, Y.: Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations. J. Math. Fluid Mech. 7, S326–S331 (2005)

    Article  MathSciNet  Google Scholar 

  3. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35, 2317–2328 (1998)

    Article  MathSciNet  Google Scholar 

  4. Chaplygin, S.: On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 21, 1–121 (1904)

    Google Scholar 

  5. Chen, G., Liu, H.: Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34, 925–938 (2003)

    Article  MathSciNet  Google Scholar 

  6. Chen, G., Liu, H.: Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Physica D 189, 141–165 (2004)

    Article  MathSciNet  Google Scholar 

  7. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience Publishers Inc., New York (1948)

    MATH  Google Scholar 

  8. Daw, D.A.E., Nedeljkov, M.: Shadow waves for pressureless gas balance laws. Appl. Math. Lett. 57, 54–59 (2016)

    Article  MathSciNet  Google Scholar 

  9. Ding, B., Witt, I., Yin, H.: The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases. J. Differ. Equ. 258(2), 445–482 (2015)

    Article  MathSciNet  Google Scholar 

  10. Faccanoni, G., Mangeney, A.: Exact solution for granular flows. Int. J. Numer. Anal. Meth. Geomech. 37, 1408–1433 (2012)

    Article  Google Scholar 

  11. Guo, L., Li, T., Pan, L., Han, X.: The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations with a source term. Nonlinear Anal.: Real World Appl. 41, 588–606 (2018)

    Article  MathSciNet  Google Scholar 

  12. Guo, L., Li, T., Yin, G.: The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Commun. Pure Appl. Anal. 16(1), 295–309 (2017)

    Article  MathSciNet  Google Scholar 

  13. Guo, L., Li, T., Yin, G.: The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term. J. Math. Anal. Appl. 455(1), 127–140 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ibrahim, M., Liu, F., Liu, S.: Concentration of mass in the pressureless limit of Euler equations for power law. Nonlinear Anal.: Real World Appl. 47, 224–235 (2019)

    Article  MathSciNet  Google Scholar 

  15. Li, J.: Note on the compressible Euler equations with zero temperature. Appl. Math. Lett. 14, 519–523 (2001)

    Article  MathSciNet  Google Scholar 

  16. Naji, J.: Extended Chaplygin gas equation of state with bulk and shear viscosities. Astrophys Space Sci. 350(1), 333–338 (2014)

    Article  Google Scholar 

  17. Naji, J., Heydari, S., Darabi, R.: New version of viscous Chaplygin gas cosmology with varying gravitational constant. Canadian J. Phys. 92(12), 1556–1561 (2014)

    Article  Google Scholar 

  18. Pang, Y., Hu, M.: The non-self-similar Riemann solutions to a compressible fluid described by the generalized Chaplygin gas. Int. J. Non-Linear Mech. 107, 56–63 (2018)

    Article  Google Scholar 

  19. Setare, M.R.: Interacting holographic generalized Chaplygin gas model. Phys. Lett. B 654, 1–6 (2007)

    Article  Google Scholar 

  20. Shao, Z.: Riemann problem with delta initial data for the isentropic relativistic Chaplygin Euler equations. Z. Angew. Math. Phys. 67, 66 (2016)

    Article  MathSciNet  Google Scholar 

  21. Shao, Z.: The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation. Z. Angew. Math. Phys. 69, 44 (2018)

    Article  MathSciNet  Google Scholar 

  22. Shandarin, S.F., Zeldovich, Y.B.: The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium. Rev. Modern Phys. 61, 185–220 (1989)

    Article  MathSciNet  Google Scholar 

  23. Shen, C.: The Riemann problem for the pressureless Euler system with the Coulomb-like friction term. IMA J. Appl. Math. 81, 76–99 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Shen, C.: The Riemann problem for the Chaplygin gas equations with a source term. Z. Angew. Math. Mech. 96, 681–695 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sheng, S., Shao, Z.: The vanishing adiabatic exponent limits of Riemann solutions to the isentropic Euler equations for power law with a Coulomb-like friction term. J. Math. Phys. 60(10), 101504 (2019)

    Article  MathSciNet  Google Scholar 

  26. Sheng, S., Shao, Z.: Concentration of mass in the pressureless limit of the Euler equations of one-dimensional compressible fluid flow. Nonlinear Anal.: Real World Appl. 52, 103039 (2020)

    Article  MathSciNet  Google Scholar 

  27. Sun, M.: The exact Riemann solutions to the generalized Chaplygin gas equations with friction. Commun. Nonlinear Sci. Numer. Simul. 36, 342–353 (2016)

    Article  MathSciNet  Google Scholar 

  28. Tsien, H.: Two dimensional subsonic flow of compressible fluids. J. Aeron. Sci. 6, 399–407 (1939)

    Article  MathSciNet  Google Scholar 

  29. von Karman, T.: Compressibility effects in aerodynamics. J. Aeron. Sci. 8, 337–365 (1941)

    Article  MathSciNet  Google Scholar 

  30. Weinan, E., Rykov, Y.G., Sinai, Y.G.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177, 349–380 (1996)

    Article  MathSciNet  Google Scholar 

  31. Yang, H., Wang, J.: Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas. J. Math. Anal. Appl. 413, 800–820 (2014)

    Article  MathSciNet  Google Scholar 

  32. Yang, H., Wang, J.: Concentration in vanishing pressure limit of solutions to the modified Chaplygin gas equations. J. Math. Phys. 57(11), 111504 (2016)

    Article  MathSciNet  Google Scholar 

  33. Yin, G., Chen, J.: Existence and stability of Riemann solution to the Aw-Rascle model with friction. Indian J. Pure Appl. Math. 49(4), 671–688 (2018)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Q.: Concentration in the flux approximation limit of Riemann solutions to the extended Chaplygin gas equations with friction. J. Math. Phys. 60(10), 101508 (2019)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Y., Zhang, Y.: Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Commun. Pure Appl. Anal. 18(3), 1523–1545 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Y., Zhang, Y.: The Riemann problem for the Suliciu relaxation system with the double-coefficient Coulomb-like friction terms. Int. J. Non-Linear Mech. 116, 200–210 (2019)

    Article  Google Scholar 

  37. Zhang, Y., Zhang, Y., Wang, J.: Concentration in the zero-exponent limit of solutions to the isentropic Euler equations for extended Chaplygin gas. Asymptot. Anal. 122(1-2), 35–67 (2021)

Download references

Acknowledgements

This work was supported by NSF of China (11501488), Scientific Research Foundation Project of Yunnan Education Department (2018JS150), Yunnan Applied Basic Research Projects (2018FD015), Nan Hu Young Scholar Supporting Program of XYNU, Science and Technology Foundation of Hebei Education Department (QN2018307) and Natural Science Foundation of Hebei Province (A2019105110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Y. & Wang, J. Zero-exponent Limit to the Extended Chaplygin Gas Equations with Friction. Bull. Malays. Math. Sci. Soc. 44, 3571–3599 (2021). https://doi.org/10.1007/s40840-021-01133-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-021-01133-8

Keywords

Mathematics Subject Classification

Navigation