Skip to main content
Log in

Design and development of Mt.Abu faint object spectrograph and camera – Pathfinder (MFOSC-P) for PRL 1.2m Mt. Abu Telescope

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Mt. Abu Faint Object Spectrograph and Camera – Pathfinder (MFOSC-P) is an imager-spectrograph developed for the Physical Research Laboratory (PRL) 1.2m telescope at Gurushikhar, Mt. Abu, India. MFOSC-P is based on a focal reducer concept and provides seeing limited imaging (with a sampling of 3.3 pixels per arc-second) in Bessell’s B, V, R, I and narrow-band H-α filters. The instrument uses three plane reflection gratings, covering the spectral range of 4500-8500Å, with three different resolutions of 500, 1000, and 2000 around their central wavelengths. MFOSC-P was conceived as a pathfinder instrument for a next-generation instrument on the PRL’s 2.5m telescope which is coming up at Mt. Abu. The instrument was developed during 2015-2019 and successfully commissioned on the PRL 1.2m telescope in February 2019. The designed performance has been verified with laboratory characterization tests and on-sky commissioning observations. Different science programs covering a range of objects are being executed with MFOSC-P since then, e.g., spectroscopy of M-dwarfs, novae & symbiotic systems, and detection of H-α emission in star-forming regions. MFOSC-P presents a novel design and cost-effective way to develop a FOSC (Faint Object Spectrograph and Camera) type of instrument on a shorter time-scale of development. The design and development methodology presented here is most suitable in helping the small aperture telescope community develop such a versatile instrument, thereby diversifying the science programs of such observatories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. https://www.newport.com/b/richardson-gratings; Accessed 2020-03-18

  2. https://andor.oxinst.com/products/ikon-xl-and-ikon-large-ccd-series/ikon-m-934; Accessed 2020-03-18

  3. https://www.newport.com/f/pencil-style-calibration-lamps, Accessed: 2020-03-18

  4. https://www.sxccd.com/lodestar-x2-autoguider; Accessed: 2020-03-19

  5. https://andor.oxinst.com/products/solis-software/; Accessed: 2020-01-23

  6. https://www.newport.com/c/motion-controllers. Accessed: 2019-09-05

  7. https://www.arcus-technology.com/ Accessed: 2020-01-23

  8. https://www.tracopower.com/home/;Accessed 2020-01-23

  9. https://gandh.com/; Accessed: 2020-03-20

  10. https://www.thorlabs.com; Accessed: 2020-03-20

  11. https://www.eso.org/sci/observing/tools/standards/spectra.html, Accessed: 2021-02-21

  12. http://www.astrosurf.com/aras/; Accessed: 2020-04-12

  13. https://www.aavso.org/; Accessed: 2020-03-20

References

  1. Allard, F., Homeier, D., Freytag, B., Schaffenberger, W, Rajpurohit, A.S.: Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects. Memorie della Societa Astronomica Italiana Supplementi 24, 128 (2013). arXiv:1302.6559

    ADS  Google Scholar 

  2. Anandarao, B., Richardson, E.H., Chakraborty, A., Epps, H.: A wide-field near-infrared camera and spectrograph for the Mt. Abu 1.2 m telescope. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7014, 70142Y (2008). https://doi.org/10.1117/12.788246

    ADS  Google Scholar 

  3. Andersen, J., Andersen, M.I., Klougart, J., Knudsen, P., Larsen, H.H., Michaelsen, N., Nielsen, R.F., Nørregaard, P, Olsen, E., Rasmussen, P.K., Seifert, K.E., jønch-sørensen, H.: New power for the Danish 1.54-m telescope. The Messenger 79, 12–14 (1995)

    ADS  Google Scholar 

  4. Anupama, G.C., Mikołajewska, J.: Recurrent novae at quiescence: systems with giant secondaries. A&A 344, 177–187 (1999). arXiv:astro-ph/9812432

    ADS  Google Scholar 

  5. Banerjee, D.P.K., Ashok, N.M.: Near-infrared properties of classical novae: A perspective gained from Mount Abu Infrared Observatory. Bull. Astronom. Soc. India 40, 243 (2012). arXiv:1306.0343

    ADS  Google Scholar 

  6. Banerjee, D.P.K., Bobra, A.D., Subhedar, D.V.: The effect of aberrations on image quality - A study for the 1.2m Gurusikhar Infrared Telescope. Bull. Astronom. Soc. India 25, 555 (1997)

    ADS  Google Scholar 

  7. Banerjee, D.P.K., Joshi, V., Evans, A., Srivastava, M., Ashok, N.M., Gehrz, R.D., Connelley, M.S., Geballe, T.R., Spyromilio, J., Rho, J., Roy, R.: Early formation of carbon monoxide in the Centaurus A supernova SN 2016adj. MNRAS 481(1), 806–818 (2018a). https://doi.org/10.1093/mnras/sty2255, arXiv:1808.04766

    Article  ADS  Google Scholar 

  8. Banerjee, D.P.K., Srivastava, M.K., Ashok, N.M., Munari, U., Hambsch, F.J., Righetti, G.L., Maitan, A.: Near-infrared and optical studies of the highly obscured nova V1831 Aquilae (Nova Aquilae 2015). MNRAS 473(2), 1895–1908 (2018b). https://doi.org/10.1093/mnras/stx2459, arXiv:1709.06585

    Article  ADS  Google Scholar 

  9. Bochanski, J.J., West, A.A., Hawley, S.L., Covey, K.R.: Low-mass dwarf template spectra from the sloan digital sky survey. AJ 133(2), 531–544 (2007). https://doi.org/10.1086/510240, arXiv:astro-ph/0610639

    Article  ADS  Google Scholar 

  10. Bode, M.F., Kahn, F.D.: A model for the outburst of nova RS Ophiuchi in 1985. MNRAS 217, 205–215 (1985). https://doi.org/10.1093/mnras/217.1.205

    Article  ADS  Google Scholar 

  11. Buzzoni, B., Delabre, B., Dekker, H., Dodorico, S., Enard, D., Focardi, P., Gustafsson, B., Nees, W., Paureau, J., Reiss, R.: The ESO faint object spectrograph and camera / EFOSC. The Messenger 38, 9 (1984)

    ADS  Google Scholar 

  12. Chakraborty, A., Mahadevan, S., Roy, A., Dixit, V., Richardson, E.H., Dongre, V., Pathan, F.M., Chaturvedi, P., Shah, V., Ubale, G.P., Anandarao, B.G.: The PRL stabilized high-resolution Echelle Fiber-fed spectrograph: Instrument description and first radial velocity results. PASP 126(936), 133 (2014). DOI10.1086/675352, arXiv:1312.5471

    Article  ADS  Google Scholar 

  13. Chakraborty, A., Roy, A., Sharma, R., Mahadevan, S., Chaturvedi, P., Prasad, N.J.S.S.V., Anandarao, B.G.: Evidence of a Sub-Saturn around EPIC 211945201. AJ 156(1), 3 (2018a). https://doi.org/10.3847/1538-3881/aac436, arXiv:1805.03466

    Article  ADS  Google Scholar 

  14. Chakraborty, A., Thapa, N., Kumar, K., Neelam, P.J.S.S.V., Sharma, R., Roy, A.: PARAS-2 precision radial velocimeter: Optical and mechanical design of a fiber-fed high resolution spectrograph under vacuum and temperature control. In: Proc SPIE, Society of photo-optical instrumentation engineers (SPIE) conference series. https://doi.org/10.1117/12.2313055, vol. 10702, p 107026G (2018b)

  15. Chaturvedi, P., Chakraborty, A., Anand, arao BG, Roy, A., Mahadevan, S.: Detection of a very low mass star in an eclipsing binary system. MNRAS 462(1), 554–564 (2016). https://doi.org/10.1093/mnras/stw1560, arXiv:1607.03277

    Article  ADS  Google Scholar 

  16. De, K., Hankins, M., Kasliwal, M.M., Sokoloski, J., Ashley, M., Babul, A., Lau, R.M., Moore, A., Ofek, E.O., Sharma, M., Soon, J., Soria, R., Travouillon, T.: Palomar Gattini-IR NIR discovery and classification of a highly reddened galactic classical nova PGIR19brv / AT2019qwf. The Astronomer’s Telegram 13130, 1 (2019)

    ADS  Google Scholar 

  17. Deshpande, M.R.: A brief report on the Infrared Telescope at Gurushikhar, MT Abu. Bulletin of the Astronomical Society of India 23, 13 (1995)

    ADS  Google Scholar 

  18. Gupta, R., Burse, M., Das, H.K., Kohok, A., Ramaprakash, A.N., Engineer, S., Tandon, S.N.: IUCAA 2 Meter telescope and its first light. Bulletin of the Astronomical Society of India 30, 785 (2002)

    ADS  Google Scholar 

  19. Iłkiewicz, K, Mikołajewska, J, Stoyanov, K., Manousakis, A., Miszalski, B.: Active phases and flickering of a symbiotic recurrent nova T CrB. MNRAS 462(3), 2695–2705 (2016). https://doi.org/10.1093/mnras/stw1837, arXiv:1607.06804

    Article  ADS  Google Scholar 

  20. Joshi, V., Banerjee, D.P.K., Srivastava, M.: Nova Ophiuchus 2017 as a Probe of 13C Nucleosynthesis and carbon monoxide formation and destruction in classical novae. ApJ 851(2), L30 (2017). https://doi.org/10.3847/2041-8213/aa9d86, arXiv:1711.09238

    Article  ADS  Google Scholar 

  21. Kashikawa, N., Inata, M., Iye, M., Kawabata, K., Okita, K., Kosugi, G., Ohyama, Y., Sasaki, T., Sekiguchi, K., Takata, T., Shimizu, Y., Yoshida, M., Aoki, K., Saito, Y., Asai, R., Taguchi, H., Ebizuka, N., Ozawa, T., Yadoumaru, Y.: FOCAS: Faint object camera and spectrograph for the Subaru Telescope. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 4008, 104–113 (2000). https://doi.org/10.1117/12.395414

    ADS  Google Scholar 

  22. Kaur, N., Chandra, S., Baliyan, K.S., Sameer, G.S.: A multiwavelength study of flaring activity in the high-energy peaked BL Lac Object 1ES 1959 + 650 During 2015-2016. ApJ 846(2), 158 (2017). https://doi.org/10.3847/1538-4357/aa86b0, arXiv:1706.04411

    Article  ADS  Google Scholar 

  23. Kumar, T.S.: Design and development of control unit and software for the ADFOSC instrument of the 3.6 m Devasthal optical telescope. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 9908, 99084Y (2016). https://doi.org/10.1117/12.2233082

    ADS  Google Scholar 

  24. Lee, C.H., Soraisam, M., Narayan, G., Matheson, T., Saha, A., Team Arizona-NOAO Temporal Analysis, Team Response to Events System, Brink, T.G., Patra, K.C., de Jaeger, T., Zheng, W., Stahl, B.E., Filippenko, A.V.: Independent confirmation of AT2019qwf as a Galactic nova with the Lick Shane telescope. The Astronomer’s Telegram 13149, 1 (2019)

    ADS  Google Scholar 

  25. Lépine, S, Gaidos, E.: An all-sky catalog of bright M dwarfs. AJ 142(4), 138 (2011). https://doi.org/10.1088/0004-6256/142/4/138, arXiv:1108.2719

    Article  ADS  Google Scholar 

  26. Moore, A.M., Kasliwal, M.M.: Unveiling the dynamic infrared sky. Nature Astronomy 3, 109–109 (2019). https://doi.org/10.1038/s41550-018-0675-x

    Article  ADS  Google Scholar 

  27. Munari, U., Dallaporta, S., Cherini, G.: The 2015 super-active state of recurrent nova T CrB and the long term evolution after the 1946 outburst. New A47, 7–15 (2016). https://doi.org/10.1016/j.newast.2016.01.002, arXiv:1602.07470

    Article  ADS  Google Scholar 

  28. Omar, A., Kumar, B., Gopinathan, M., Sagar, R.: Scientific capabilities and advantages of the 3.6 meter optical telescope at Devasthal, Uttarakhand. Curr. Sci. 113, 682–685 (2017). arXiv:1710.01050

    Article  ADS  Google Scholar 

  29. Pirnay, O., Lousberg, G.P., Lanotte, A., Gabriel, E., Tortolani, J.M., Fontana, N., Orban, S.: Mt ABU 2.5m Telescope: Design and fabrication. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. https://doi.org/10.1117/12.2313364, vol. 10700, p 107005S (2018)

  30. Prabhu, T.P., Anupama, G.C.: Science with Indian Astronomical Observatory, Hanle. In: Astronomical Society of India Conference Series, Astronomical Society of India Conference Series, vol. 1, pp 193–201 (2010)

  31. Rajpurohit, A.S., Kumar, V., Srivastava, M.K., Allard, F., Homeier, D., Dixit, V., Patel, A.: First results from MFOSC-P: low-resolution optical spectroscopy of a sample of M dwarfs within 100 parsecs. MNRAS 492 (4), 5844–5852 (2020). https://doi.org/10.1093/mnras/staa163, arXiv:2001.05683

    Article  ADS  Google Scholar 

  32. Schweizer, F.: Anamorphic magnification of grating spectrographs - a reminder. PASP 91, 149 (1979). https://doi.org/10.1086/130458

    Article  ADS  Google Scholar 

  33. Srivastava, M.K., Ashok, N.M., Banerjee, D.P.K., Sand, D.: Near-infrared studies during maximum and early decline of Nova Cephei 2014 and Nova Scorpii 2015. MNRAS 454(2), 1297–1309 (2015). https://doi.org/10.1093/mnras/stv2094, arXiv:1509.02660

    Article  ADS  Google Scholar 

  34. Srivastava, M.K., Banerjee, D.P.K., Ashok, N.M., Venkataraman, V., Sand, D., Diamond, T.: Near-infrared studies of V2944 Ophiuchi (Nova Ophiuchi 2015). MNRAS 462(2), 2074–2084 (2016). https://doi.org/10.1093/mnras/stw1807

    Article  ADS  Google Scholar 

  35. Srivastava, M.K., Jangra, M., Dixit, V., Munjal, B.S., Arora, H., Mavani, T.: Design and development of Mt. Abu faint object spectrograph and camera-pathfinder (MFOSC-P) for PRL 1.2m Mt. Abu telescope, India. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. https://doi.org/10.1117/12.2309306, vol. 10702, p 107024I (2018)

  36. Srivastava, M.K., Kumar, V., Banerjee, D.P.K., Joshi, V.: Optical Spectroscopy of the highly reddened galactic classical nova AT2019qwf. The Astronomer’s Telegram 13258, 1 (2019)

    ADS  Google Scholar 

  37. Venkataramani, K., Ganesh, S., Rai, A., Husariḱ, M, Baliyan, K.S., Joshi, U.C.: Time and phase resolved optical spectra of potentially hazardous asteroid 2014 JO25. AJ 157(5), 199 (2019). https://doi.org/10.3847/1538-3881/ab0f26, arXiv:1903.04764

    Article  ADS  Google Scholar 

  38. Williams, R.E.: The formation of novae spectra. AJ 104, 725 (1992). https://doi.org/10.1086/116268

    Article  ADS  Google Scholar 

  39. Zamanov, R.K., Bode, M.F., Tomov, N.A., Porter, J.M.: Emission line variability of RS Ophiuchi. MNRAS 363(1), L26–L30 (2005). https://doi.org/10.1111/j.1745-3933.2005.00077.x, arXiv:astro-ph/0506337

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Development of the MFOSC-P instrument has been funded by the Department of Space, Government of India through Physical Research Laboratory (PRL), Ahmedabad. MFOSC-P team is thankful to the Director, PRL, for supporting the MFOSC-P development program. We express deep thanks to D.P.K. Banerjee (PRL) and Lalita Sharma (Indian Institute of Technology, Roorkee, India) for useful comments on the manuscript. MKS expresses sincere thanks to Shyam N. Tandon (Inter-University Center for Astronomy and Astrophysics – IUCAA, Pune, India) for detailed discussions on several aspects of FOSC design throughout the development process. VK is thankful to PRL for his Ph.D. research fellowship. MFOSC-P team expresses sincere thanks to Mt. Abu observatory staff for their sustained help and support during MFOSC-P commissioning and subsequent observations.

Funding

The development of the MFOSC-P instrument has been funded by the Department of Space, Government of India through Physical Research Laboratory (PRL), Ahmedabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudit K. Srivastava.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Availability of Data and Material

The instrument characterization data presented in this paper may be made available on reasonable request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, M.K., Kumar, V., Dixit, V. et al. Design and development of Mt.Abu faint object spectrograph and camera – Pathfinder (MFOSC-P) for PRL 1.2m Mt. Abu Telescope. Exp Astron 51, 345–382 (2021). https://doi.org/10.1007/s10686-021-09753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09753-5

Keywords

Navigation