Skip to main content

Advertisement

Log in

Biochar promotes methane production during anaerobic digestion of organic waste

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Climate change and energy demand are calling for more sustainable fuels such as biomethane produced by anaerobic digestion of organic waste. Biochar addition to waste is presumed to enhance the efficiency of methane production, yet individual reports disclose contradictory results. Therefore, we performed a meta-analysis of 27 selected publications containing 156 paired measurements of control and biochar-amended treatments to assess the impact of biochar on the methanogenic performance. Results show that biochar promotes biomethane production substantially with a high Hedge's d value of 5.7 ± 1.04, yet sporadic publications report a methane decline. Methanogenic performance is statistically controlled by feedstock type, pyrolysis temperature and biochar concentration, but not controlled by pH, size, surface area and methanogen species. These findings should help to tune the parameters of anaerobic digestion with biochar to optimize biomethane productions. Moreover, our results cast some doubt on the efficiency of adding biochar to soil to sequester carbon in soils because biochar promotes methane generation and, in turn, emissions of methane, a greenhouse gas, to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhil D, Lakshmi D, Kartik A, Vo DVN, Arun J, Gopinath K (2021) Production, characterization, activation and environmental applications of engineered biochar: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01167-7

    Article  Google Scholar 

  • Begum S, Anupoju G, Sridhar S, Bhargava S, Jegatheesan V, Eshtiaghi N (2018) Evaluation of single and two stage anaerobic digestion of landfill leachate: effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Bioresour Technol 251:364–373

    Article  CAS  Google Scholar 

  • Bruun E, Hauggaard-Nielsen H, Ibrahim N, Egsgaard H, Ambus P, Jensen P, Dam-Johansen K (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35:1182–1189

    Article  CAS  Google Scholar 

  • Cayuela M, Jeffery S, van Zwieten L (2015) The molar H: corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agr Ecosyst Environ 202:135–138

    Article  CAS  Google Scholar 

  • Chen R, Jiang H, Li Y (2018) Caffeine degradation by methanogenesis: efficiency in anaerobic membrane bioreactor and analysis of kinetic behavior. Chem Eng J 334:444–452

    Article  CAS  Google Scholar 

  • Chen W, Wei R, Yang L, Yang Y, Li G, Ni J (2019) Characteristics of wood-derived biochars produced at different temperatures before and after deashing: their different potential advantages in environmental applications. Sci Total Environ 651:2762–2771

    Article  CAS  Google Scholar 

  • Cheng Q, Call D, Reyes de los F (2018) Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation. Environ Sci-Wat Res 4:1794–1806

    CAS  Google Scholar 

  • Cross A, Sohi S (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134

    Article  CAS  Google Scholar 

  • Demisie W, Liu Z, Zhang M (2014) Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 121:214–221

    Article  CAS  Google Scholar 

  • Diao Z, Dong F, Yan L, Chen Z, Qian W, Kong L, Zhang Z, Zhang T, Tao X, Du J, Jiang D, Chu W (2020) Synergistic oxidation of bisphenol A in a heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate process: reactivity and mechanism. J Hazard Mater 384:121385

    Article  CAS  Google Scholar 

  • Fagbohungbe M, Herbert B, Hurst L, Ibeto C, Li H, Usmani S, Semple K (2017) The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manage 61:236–249

    Article  CAS  Google Scholar 

  • Fawzy S, Osman A, Yang H, Doran J, Rooney D (2021) Industrial biochar systems for atmospheric carbon removal: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-021-01210-1

    Article  Google Scholar 

  • Feng K, Wang Q, Li H, Zhang Y, Deng Z, Liu J, Du X (2020) Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates. Renew Energ 154:385–393

    Article  CAS  Google Scholar 

  • Fidel R, Laird D, Thompson M, Lawrinenko M (2017) Characterization and quantification of biochar alkalinity. Chemosphere 167:367–373

    Article  CAS  Google Scholar 

  • Gao L, Goldfarb J (2019) Heterogeneous biochars from agriculture residues and coal fly ash for the removal of heavy metals from coking wastewater. RSC Adv 9:16018–16027

    Article  CAS  Google Scholar 

  • Gao M, Zhang L, Liu Y (2020) High -loading food waste and blackwater anaerobic co -digestion: maximizing bioenergy recovery. Chem Eng J 394:124911

    Article  CAS  Google Scholar 

  • Garcia-Mancha N, Monsalvo V, Puyol D, Rodriguez J, Mohedano A (2017) Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. J Hazard Mater 339:320–329

    Article  CAS  Google Scholar 

  • Glaser B, Parr M, Braun C, Kopolo G (2009) Biochar is carbon negative. Nature Geosci 2:2

    Article  CAS  Google Scholar 

  • Gunarathne V, Ashiq A, Ramanayaka S, Wijekoon P, Vithanage M (2019) Biochar from municipal solid waste for resource recovery and pollution remediation. Environ Chem Lett 17:1225–1235

    Article  CAS  Google Scholar 

  • Hao S, Zhu X, Liu Y, Qian F, Fang Z, Shi Q, Zhang S, Chen J, Ren Z (2018) Production temperature effects on the structure of hydrochar-derived dissolved organic matter and associated toxicity. Environ Sci Technol 52:7486–7495

    Article  CAS  Google Scholar 

  • He X, Yin H, Sun X, Han L, Huang G (2018) Effect of different particle-size biochar on methane emissions during pig manure/wheat straw aerobic composting: insights into pore characterization and microbial mechanisms. Bioresour Technol 268:633–637

    Article  CAS  Google Scholar 

  • He P, Zhang H, Duan H, Shao L, Lu F (2020) Continuity of biochar-associated biofilm in anaerobic digestion. Chem Eng J 390:124605

    Article  CAS  Google Scholar 

  • Hedges L, Gurevitch J, Curtis P (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Huang J, Ma K, Xia X, Gao K, Lu Y (2020a) Biochar and magnetite promote methanogenesis during anaerobic decomposition of rice straw. Soil Biol Biochem 143:107740

    Article  CAS  Google Scholar 

  • Huang W, Lee D, Huang C (2020b) Modification on biochars for applications: a research update. Bioresour Technol 319(4):124100

    Google Scholar 

  • Jeffery S, Verheijen F, Kammann C, Abalos D (2016) Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol Biochem 101:251–258

    Article  CAS  Google Scholar 

  • Ji M, Zhou L, Zhang S, Luo G, Sang W (2020) Effects of biochar on methane emission from paddy soil: focusing on dom and microbial communities. Sci Total Environ 743:140725

    Article  CAS  Google Scholar 

  • Jiang Q, Chen Y, Yu S, Zhu R, Zhong C, Zhou H, Gu L, He Q (2020) Effects of citrus peel biochar on anaerobic co-digestion of food waste and sewage sludge and its direct interspecies electron transfer pathway study. Chem Eng J 398:125643

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico P, Johnson M, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Larry H, Ingram O (1985). Statistical Methods for Meta-analysis. In Academic Press, Elsevier: New York 20: 369. https://www.elsevier.com/books/statistical-methods-for-meta-analysis/hedges/978-0-08-057065-5

  • Li J, Xiao L, Zheng S, Zhang Y, Luo M, Tong C, Xu H, Tan Y, Liu J, Wang O, Liu F (2018) A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: beneficial to acetoclastic methanogenesis instead of CO2 reduction. Sci Total Environ 643:1024–1030

    Article  CAS  Google Scholar 

  • Lim E, Tian H, Chen Y, Ni K, Zhang J, Tong Y (2020) Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. Bioresour Technol 314:123751

    Article  CAS  Google Scholar 

  • Lorentz K, Lal R (2014) Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Plant Nutr Soil Sci 177:651–670

    Article  CAS  Google Scholar 

  • Lu C, Shen Y, Li C, Zhu N, Yuan H (2020a) Redox-active biochar and conductive graphite stimulate methanogenic metabolism in anaerobic digestion of waste activated sludge: beyond the direct interspecies electron transfer. ACS Sustain Chem Eng 8(33):12626–12636

    Article  CAS  Google Scholar 

  • Lu J, Chen C, Huang C, Zhuang H, Lee D (2020b) Dark fermentation production of volatile fatty acids from glucose with biochar amended biological consortium. Bioresour Technol 303:122921

    Article  CAS  Google Scholar 

  • Luo C, Lu F, Shao L, He P (2015) Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes (vol 68, pg 710, 2014). Water Res 70:496–496

    Article  CAS  Google Scholar 

  • Ma W, Li H, Zhang W, Shen C, Wang L, Li Y, Li Q, Wang Y (2020) TiO2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment. Sci Total Environ 713:136602

    Article  CAS  Google Scholar 

  • Ma J, Chen F, Xue S, Pan J, Khoshnevisan B, Yang Y, Liu H, Qiu L (2021) Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies. Bioresour Technol 325(1):124697

    Article  CAS  Google Scholar 

  • Madigou C, Le Cao K, Bureau C, Mazeas L, Dejean S, Chapleur O (2019) Ecological consequences of abrupt temperature changes in anaerobic digesters. Chem Eng J 361:266–277

    Article  CAS  Google Scholar 

  • Mao C, Zhang T, Wang X, Feng Y, Ren G, Yang G (2017) Process performance and methane production optimizing of anaerobic co-digestion of swine manure and corn straw. Sci Rep-Uk 7:9379

    Article  CAS  Google Scholar 

  • Martins G, Salvador A, Pereira L, Alves M (2018) Methane production and conductive materials: a critical review. Environ Sci Technol 2:10241–10253

    Article  CAS  Google Scholar 

  • Masebinu S, Akinlabi E, Muzenda E, Aboyade A (2019) A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew Sust Energ Rev 103:291–307

    Article  CAS  Google Scholar 

  • Meng L, Xie L, Suenaga T, Riya S, Terada A, Hosomi M (2020) Eco-compatible biochar mitigates volatile fatty acids stress in high load thermophilic solid-state anaerobic reactors agricultural treating waste. Bioresour Technol 309:123366

    Article  CAS  Google Scholar 

  • Qiu L, Deng Y, Wang F, Davaritouchaee M, Yao Y (2019) A review on biochar-mediated anaerobic digestion with enhanced methane recovery. Renew Sust Energ Rev 115:109373

    Article  CAS  Google Scholar 

  • Rasapoor M, Young B, Asadov A, Brar R, Sarmah A, Zhuang W, Baroutian S (2020) Effects of biochar and activated carbon on biogas generation: a thermogravimetric and chemical analysis approach. Energ Convers Manag 203:112221

    Article  CAS  Google Scholar 

  • Regkouzas P, Diamadopoulos E (2019) Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere 224:840–851

    Article  CAS  Google Scholar 

  • Shen Y, Linville J, Ignacio-de Leon P, Schoene R, Urgun-Demirtas M (2016) Towards a sustainable paradigm of waste-to-energy process: enhanced anaerobic digestion of sludge with woody biochar. J Clean Prod 135:1054–1064

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Dhanjal D, Datta S, Bhatia D, Dhiman J, Samuel J, Prasad R, Singh J (2020) A sustainable paradigm of sewage sludge biochar: valorization, opportunities, challenges and future prospects. J Clean Prod 269:122259

    Article  CAS  Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Tang S, Wang Z, Liu Z, Zhang Y, Si B (2020) The role of biochar to enhance anaerobic digestion: a review. J Renew Mater 8:1033–1052

    Article  CAS  Google Scholar 

  • Van Steendam C, Smets I, Skerlos S, Raskin L (2019) Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods. Curr Opin Biotechnol 57:183–190

    Article  CAS  Google Scholar 

  • Viggi C, Simonetti S, Palma E, Pagliaccia P, Braguglia C, Fazi S, Baronti S, Navarra M, Pettiti I, Koch C, Harnisch F, Aulenta F (2017) Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar. Biotechnol Biofuels 10:303

    Article  CAS  Google Scholar 

  • Wang W, Lee D (2021) Direct interspecies electron transfer mechanism in enhanced methanogenesis: a mini-review. Bioresour Technol 330:124980

    Article  CAS  Google Scholar 

  • Wang H, Xiao K, Yang J, Yu Z, Yu W, Xu Q, Wu Q, Liang S, Hu J, Hou H, Liu B (2020) Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: a potential phosphorus fertilizer. Water Res 174:115629

    Article  CAS  Google Scholar 

  • Xiao L, Liu F, Liu J, Li J, Zhang Y, Yu J, Wang O (2018) Nano-Fe3O4 particles accelerating electromethanogenesis on an hour-long timescale in wetland soil. Environ Sci-Nano 5:436–445

    Article  CAS  Google Scholar 

  • Xiao L, Liu F, Xu H, Feng D, Liu J, Han G (2019a) Biochar promotes methane production at high acetate concentrations in anaerobic soils. Environ Chem Lett 17:1347–1352

    Article  CAS  Google Scholar 

  • Xiao L, Sun R, Zhang P, Zheng S, Tan Y, Li J, Zhang Y, Liu F (2019b) Simultaneous intensification of direct acetate cleavage and CO2 reduction to generate methane by bioaugmentation and increased electron transfer. Chem Eng J 378:122229

    Article  CAS  Google Scholar 

  • Xiao L, Wei W, Luo M, Xu H, Feng D, Yu J, Huang J, Liu F (2019c) A potential contribution of a Fe(III)-rich red clay horizon to methane release: biogenetic magnetite-mediated methanogenesis. CATENA 181:104081

    Article  CAS  Google Scholar 

  • Xiao L, Zheng S, Lichtfouse E, Luo M, Tan Y, Liu F (2020a) Carbon nanotubes accelerate acetoclastic methanogenesis: from pure cultures to anaerobic soils. Soil Biol Biochem 150:107938

    Article  CAS  Google Scholar 

  • Xiao L, Liu F, Lichtfouse E, Zhang P, Feng D, Li F (2020b) Methane production by acetate dismutation stimulated by Shewanella oneidensis and carbon materials: an alternative to classical CO2 reduction. Chem Eng J 389:124469

    Article  CAS  Google Scholar 

  • Xiao L, Li J, Lichtfouse E, Li Z, Wang Q, Liu F (2021a) Augmentation of chloramphenicol degradation by Geobacter-based biocatalysis and electric field. J Hazard Mater 410:124977

    Article  CAS  Google Scholar 

  • Xiao L, Wang Y, Lichtfouse E, Li Z, Kumar S, Liu J, Feng D, Yang Q, Liu F (2021b) Effect of antibiotics on the microbial efficiency of anaerobic digestion of wastewater: a review. Front Microbiol 11:611613

    Article  Google Scholar 

  • Yang H, Ye S, Zeng Z, Zeng G, Tan X, Xiao R, Wang J, Song B, Du L, Qin M, Yang Y, Xu F (2020) Utilization of biochar for resource recovery from water: a review. Chem Eng J 397:125502

    Article  CAS  Google Scholar 

  • Yuan J, Xu R, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497

    Article  CAS  Google Scholar 

  • Yuan H, Ding L, Zama E, Liu P, Hozzein W, Zhu Y (2018) Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate. Environ Sci Technol 52:12198–12207

    Article  CAS  Google Scholar 

  • Zhang J, Zhao W, Zhang H, Wang Z, Fan C, Zang L (2018) Recent achievements in enhancing anaerobic digestion with carbon-based functional materials. Bioresour Technol 266:555–567

    Article  CAS  Google Scholar 

  • Zhang L, Loh K, Zhang J (2019) Jointly reducing antibiotic resistance genes and improving methane yield in anaerobic digestion of chicken manure by feedstock microwave pretreatment and activated carbon supplementation. Chem Eng J 372:815–824

    Article  CAS  Google Scholar 

  • Zhang L, Lim E, Loh K, Ok Y, Lee J, Shen Y, Wang C, Dai Y, Tong Y (2020) Biochar enhanced thermophilic anaerobic digestion of food waste: focusing on biochar particle size, microbial community analysis and pilot-scale application. Energ Convers Manag 209:112654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (no. 42077025) and Youth Innovation Promotion Association, CAS (2021213). We thank the editors and reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

LX and EL designed the research. LX and QW collected the data. LX, EL, SK, FL analyzed the data. LX and EL wrote the article.

Corresponding authors

Correspondence to Leilei Xiao or Eric Lichtfouse.

Ethics declarations

Conflict of interest

Authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Lichtfouse, E., Kumar, P.S. et al. Biochar promotes methane production during anaerobic digestion of organic waste. Environ Chem Lett 19, 3557–3564 (2021). https://doi.org/10.1007/s10311-021-01251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-021-01251-6

Keywords

Navigation