Skip to main content

Advertisement

Log in

Temperature Increases Soil Respiration Across Ecosystem Types and Soil Development, But Soil Properties Determine the Magnitude of This Effect

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Soil carbon losses to the atmosphere, via soil heterotrophic respiration, are expected to increase in response to global warming, resulting in a positive carbon-climate feedback. Despite the well-known suite of abiotic and biotic factors controlling soil respiration, much less is known about how the magnitude of soil respiration responses to temperature changes over soil development and across contrasting soil properties. Here we investigated the role of soil development stage and soil properties in driving the responses of soil heterotrophic respiration to temperature. We incubated soils from eight chronosequences ranging in soil age from hundreds to million years, and encompassing a wide range of vegetation types, climatic conditions and chronosequences origins, at three assay temperatures (5 °C, 15 °C and 25 °C). We found a consistent positive effect of assay temperature on soil respiration rates across the eight chronosequences evaluated. However, chronosequences parent materials (sedimentary/sand dunes or volcanic) and soil properties (pH, phosphorus content and microbial biomass) determined the magnitude of this temperature effect. Finally, we observed a positive effect of soil development stage on soil respiration across chronosequences that did not alter the magnitude of assay temperature effects. Our work reveals that key soil properties alter the magnitude of the positive effect of temperature on soil respiration found across ecosystem types and soil development stages. This information is essential to better understand the magnitude of the carbon-climate feedback and thus to establish accurate greenhouse gas emission targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data in the support of these findings and the R code for the statistical models are available in Figshare at https://doi.org/10.6084/m9.figshare.12981530.

References

  • Aiken RM, Jawson MD, Grahammer K, Polymenopoulos AD. 1991. Positional, spatially correlated and random components of variability in carbon dioxide efllux. J Environ Qual 20:301–308.

    Google Scholar 

  • Alfaro FD, Manzano M, Marquet PA, Gaxiola A. 2017. Microbial communities in soil chronosequences with distinct parent material: the effect of soil pH and litter quality. J Ecol 105:1709–1722.

    CAS  Google Scholar 

  • Anderson JM, Ingram JSI. 1993. Tropical soil biology and fertility: a handbook of methods. Oxford: CAB International.

    Google Scholar 

  • Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T, Lindsay K, Tjiputra JF, Wu T. 2013. Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J Clim 26:5289–5314.

    Google Scholar 

  • Atkin OK, Tjoelker MG. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351.

    CAS  PubMed  Google Scholar 

  • Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B. 2017. Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob Change Biol 23:3808–3824.

    Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.

    Google Scholar 

  • Birch HF. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31.

    CAS  Google Scholar 

  • Blaško R, Holm Bach L, Yarwood SA, Trumbore SE, Högberg P, Högberg MN. 2015. Shifts in soil microbial community structure, nitrogen cycling and the concomitant declining N availability in ageing primary boreal forest ecosystems. Soil Biol Biochem 91:200–211.

    Google Scholar 

  • Bligh EG, Dyer WJ. 1959. A rapid method of total extraction and purification. Can J Biochem Physiol 37:911–917.

    CAS  PubMed  Google Scholar 

  • Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R. 2018. Globally rising soil heterotrophic respiration over recent decades. Nature 560:80–83. https://doi.org/10.1038/s41586-018-0358-x.

    Article  CAS  PubMed  Google Scholar 

  • Bond-Lamberty B, Thomson A. 2010. Temperature-associated increases in the global soil respiration record. Nature 464:579–582.

    CAS  PubMed  Google Scholar 

  • Bradford MA, McCulley RL, Crowther TW, Oldfield EE, Wood SA, Fierer N. 2019. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat Ecol Evol 3:223–31. http://www.nature.com/articles/s41559-018-0771-4.

  • Bradford MA, Watts BW, Davies CA. 2010. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Change Biol 16:1576–1588.

    Google Scholar 

  • Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Change 6:751–758. https://doi.org/10.1038/nclimate3071%5Cn.

    Article  Google Scholar 

  • Buyer JS, Sasser M. 2012. High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130.

    Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. 2003. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–9. https://aem.asm.org/content/69/6/3593

  • Campbell JL, Law BE. 2005. Forest soil respiration across three climatically distinct chronosequences in Oregon. Biogeochemistry 73:109–125.

    Google Scholar 

  • Carey JC, Tang J, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA, Jiang L, Machmuller MB, Mohan J, Panetta AM, Reich PB, Reinsch S, Wang X, Allison SD, Bamminger C, Bridgham S, Collins SL, de Dato G, Eddy WC, Enquist BJ, Estiarte M, Harte J, Henderson A, Johnson BR, Larsen KS, Luo Y, Marhan S, Melillo JM, Peñuelas J, Pfeifer-Meister L, Poll C, Rastetter E, Reinmann AB, Reynolds LL, Schmidt IK, Shaver GR, Strong AL, Suseela V, Tietema A. 2016. Temperature response of soil respiration largely unaltered with experimental warming. Proc Natl Acad Sci 113:13797–13802.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson ML, Flagstad LA, Gillet F, Mitchell EAD. 2010. Community development along a proglacial chronosequence: are above-ground and below-ground community structure controlled more by biotic than abiotic factors? J Ecol 98:1084–1095.

    Google Scholar 

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS. 2019. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Price B. 1991. Regression analysis by example, 2nd edn. New York: Wiley.

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell A, Chhabra R, DeFries R, Galloway J, Heimann C, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P. 2014. Carbon and other biogeochemical cycles. In: Climate Change (2013):The physical science basis. Contribution of working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. pp 465–570.

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424.

    Google Scholar 

  • Crowther TW, Todd-Brown K, Rowe C, Wieder W, Carey J, Machmuller M, Snoek L, Fang S, Zhou G, Allison S, Blair J, Bridgham S, Burton A, Carrillo Y, Reich P, Clark J, Classen A, Dijkstra F, Elberling B, Emmett B, Estiarte M, Frey S, Guo J, Harte J, Jiang L, Johnson B, Kröel-Dulay G, Larsen K, Laudon H, Lavallee J, Luo Y, Lupascu M, Ma L, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Penuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds L, Schmidth I, Sistla S, Sokol N, Templer P, Treseder K, Welker J, Bradford M. 2016. Quantifying global soil C losses in response to warming. Nature 540:104–108.

    CAS  PubMed  Google Scholar 

  • Dacal M, Bradford MA, Plaza C, Maestre FT, García-Palacios P. 2019. Soil microbial respiration adapts to ambient temperature in global drylands. Nat Ecol Evol 3:232–238.

    PubMed  PubMed Central  Google Scholar 

  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440.

  • Davidson EA, Janssens IA, Luo Y. 2006. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164.

    Google Scholar 

  • Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, Lambers H, Neuhauser S, Gallardo A, García-Velázquez L, Sala OE, Abades SR, Alfaro FD, Berhe AA, Bowker MA, Currier CM, Cutler NA, Hart SC, Hayes PE, Hseu ZY, Kirchmair M, Peña-Ramírez VM, Pérez CA, Reed SC, Santos F, Siebe C, Sullivan BW, Weber-Grullon L, Fierer N. 2019. Changes in belowground biodiversity during ecosystem development. Proc Natl Acad Sci USA 116:6891–6896.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceicao AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romao R, Tighe M, Torres D, Torres-Díaz C, Ungar E, Val J, Wamiti W, Wang D, Zaady E. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676.

    CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Reich PB, Bardgett RD, Eldridge DJ, Lambers H, Wardle DA, Reed SC, Plaza C, Png GK, Neuhauser S, Berhe AA, Hart SC, Hu HW, He JZ, Bastida F, Abades S, Alfaro FD, Cutler NA, Gallardo A, García-Velázquez L, Hayes PE, Hseu ZY, Pérez CA, Santos F, Siebe C, Trivedi P, Sullivan BW, Weber-Grullon L, Williams MA, Fierer N. 2020. The influence of soil age on ecosystem structure and function across biomes. Nat Commun 11:1–14.

    Google Scholar 

  • Doetterl S, Berhe AA, Arnold C, Bodé S, Fiener P, Finke P, Fuchslueger L, Griepentrog M, Harden JW, Nadeu E, Schnecker J, Six J, Trumbore S, Van Oost K, Vogel C, Boeckx P. 2018. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat Geosci 11:589–593.

    CAS  Google Scholar 

  • Exbrayat JF, Pitman AJ, Abramowitz G. 2014. Response of microbial decomposition to spin-up explains CMIP5 soil carbon range until 2100. Geosci Model Dev 7:2683–2692.

    Google Scholar 

  • Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315.

    Google Scholar 

  • Frostegård A, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65.

    Google Scholar 

  • García-Palacios P, Milla R, Álvaro-Sánchez M, Martín-Robles N, Maestro M. 2013. Application of a high-throughput laboratory method to assess litter decomposition rates in multiple-species experiments. Soil Biol Biochem 57:929–932. https://doi.org/10.1016/j.soilbio.2012.09.029.

    Article  CAS  Google Scholar 

  • Gotelli NJ, Ellison AM. 2004. A primer of ecological statistics. Sunderland: Sinauer Associates.

    Google Scholar 

  • Guo H, Ye C, Zhang H, Pan S, Ji Y, Li Z, Liu M, Zhou X, Du G, Hu F, Hu S. 2017. Long-term nitrogen and phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biol Biochem 113:26–34. https://doi.org/10.1016/j.soilbio.2017.05.024.

    Article  CAS  Google Scholar 

  • Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA. 2008. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11:1092–1100.

    PubMed  Google Scholar 

  • He Y, Widney S, Ruan M, Herbert E, Li X, Craft C. 2016. Accumulation of soil carbon drives denitrification potential and lab-incubated gas production along a chronosequence of salt marsh development. Estuarine Coast Shelf Sci 172:72–80. https://doi.org/10.1016/j.ecss.2016.02.002.

    Article  CAS  Google Scholar 

  • Herbst M, Prolingheuer N, Graf A, Huisman JA, Weihermüller L, Vanderborght J. 2009. Characterization and understanding of bare soil respiration spatial variability at plot scale. Vadose Zone J 8:762–771.

    Google Scholar 

  • Hochachka PW, Somero GN. 2002. Biochemical adaptation: mechanism and process in physiological evolution. New York: Oxford University Press.

    Google Scholar 

  • Jenny H. 1941. Factors of soil formation: a system of quantitative pedology. McGraw-Hill https://www.jstor.org/stable/211491?origin=crossref.

  • Karhu K, Auffret MD, Dungait JA, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Agren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–4. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907221036andpartnerID=40andmd5=e0e53e501f68db358f48a46d2869a985.

  • Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M. 2015. Mineral protection of soil carbon counteracted by root exudates. Nat Clim Change 5:588–595.

    CAS  Google Scholar 

  • Kettler TA, Doran JW, Gilbert TL. 2001. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65:849–852.

    CAS  Google Scholar 

  • Kirschbaum MUF. 2006. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–2518.

    CAS  Google Scholar 

  • Le Bagousse-Pinguet Y, Gross N, Saiz H, Maestre FT, Ruiz S, Dacal M, Asensio S, Ochoa V, Gozalo B, Cornelissen JHC, Deschamps L, García C, Maire V, Milla R, Salinas N, Wang J, Singh BK, García-Palacios P. 2021. Functional rarity and evenness are key facets of biodiversity to boost multifunctionality. Proceedings of the National Academy of Sciences 118. http://www.pnas.org/lookup/doi/https://doi.org/10.1073/pnas.2019355118.

  • Laliberté E, Grace JB, Huston MA, Lambers H, Teste FP, Turner BL, Wardle DA. 2013. How does pedogenesis drive plant diversity? Trends Ecol Evol 28:331–340.

    PubMed  Google Scholar 

  • Law BE, Sun OJ, Campbell J, Van Tuyl S, Thornton PE. 2003. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Glob Change Biol 9:510–524.

    Google Scholar 

  • Liu L, Gundersen P, Zhang T, Mo J. 2012. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol Biochem 44:31–38. https://doi.org/10.1016/j.soilbio.2011.08.017.

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–323.

    Google Scholar 

  • Midi H, Bagheri A. 2010. Robust multicollinearity diagnostic measure in collinear data set. International conference on applied mathematics, simulation, modelling–proceedings. pp 138–42.

  • Min K, Berhe AA, Khoi CM, van Asperen H, Gillabel J, Six J. 2020. Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers. Biogeochemistry 148:255–269. https://doi.org/10.1007/s10533-020-00658-7.

    Article  CAS  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J. 1999. Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246.

    PubMed  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939 US Government Printing Office.

  • Orwin KH, Wardle DA, Greenfield LG, Setälä H, Orwin KH, Wardle DA, Greenfield LG. 2006. Context-dependent changes in the resistance and resilience of soil microbes to an experimental disturbance for three primary plant chronosequences. Oikos 112:196–208.

    Google Scholar 

  • Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR. 2010. Understanding ecosystem retrogression. Ecol Monogr 80:509–529.

    Google Scholar 

  • R Core Team. 2015. R: A language and environment for statistical computing. http://www.r-project.org/.

  • Rasmussen C, Heckman K, Wieder WR, Keiluweit M, Lawrence CR, Berhe AA, Blankinship JC, Crow SE, Druhan JL, Hicks Pries CE, Marin-Spiotta E, Plante AF, Schädel C, Schimel JP, Sierra CA, Thompson A, Wagai R. 2018. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137:297–306.

    CAS  Google Scholar 

  • Rayment MB, Jarvis PG. 2000. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biol Biochem 32:35–45.

    CAS  Google Scholar 

  • Reth S, Reichstein M, Falge E. 2005. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux—a modified model. Plant Soil 268:21–33.

    CAS  Google Scholar 

  • Rinnan R, Bååth E. 2009. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Appl Environ Microbiol 75:3611–3620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rochette P, Desjardins RL, Pattey E. 1991. Spatial and temporal variability of soil respiration in agricultural fields. Can J Soil Sci 71:189–196.

    Google Scholar 

  • Rustad L, Huntington T, Boone R. 2000. Controls on soil respiration: implications for climate change. Biogeochemistry 48:1–6. http://www.springerlink.com/index/K2685T218357712G.pdf.

  • Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V, Farrell EP. 2006. Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Glob Change Biol 12:1007–1020.

    Google Scholar 

  • Schindlbacher A, Schnecker J, Takriti M, Borken W, Wanek W. 2015. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest—no indications for thermal adaptations. Glob Change Biol 21:4265–4277.

    Google Scholar 

  • Schlesinger WH. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234.

    CAS  Google Scholar 

  • Tang J, Bolstad PV, Desai AR, Martin JG, Cook BD, Davis KJ, Carey EV. 2008. Ecosystem respiration and its components in an old-growth northern forest. Agric For Meteorol 148:171–185.

    Google Scholar 

  • Thompson CG, Kim RS, Aloe AM, Becker BJ. 2017. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl Soc Psychol 39:81–90.

    Google Scholar 

  • Tucker CL, Bell J, Pendall E, Ogle K. 2013. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob Change Biol 19:252–263.

    Google Scholar 

  • Vitousek P. 2004. Nutrient cycling and limitation: Hawai’i as a model system. Princeton: Princeton University Press.

    Google Scholar 

  • Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, Janssens IA, Sigurdsson BD, Richter A. 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Change 8:885–889. https://doi.org/10.1038/s41558-018-0259-x.

    Article  CAS  Google Scholar 

  • Wang C, Bond-Lamberty B, Gower ST. 2002. Soil surface CO2 flux in a boreal black spruce fire chronosequence. J Geophys Res 108:8224. https://doi.org/10.1029/2001JD000861.

    Article  Google Scholar 

  • Wang WJ, Dalal RC, Moody PW, Smith CJ. 2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35:273–284.

    CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.

    CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Walker LR, Peltzer DA, Lagerström A. 2008. The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. Oikos 117:93–103.

    Google Scholar 

  • Ye J, Bradford MA, Dacal M, Maestre FT, García-Palacios P. 2019. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob Change Biol 25:3354–3364.

    Google Scholar 

  • Ye J, Bradford MA, Maestre FT, Li F, García-Palacios P. 2020. Compensatory thermal adaptation of soil microbial respiration rates in global croplands. Glob Biogeochem Cycles 34:1–2.

    Google Scholar 

  • Zhou L, Zhou X, Shao J, Nie Y, He Y, Jiang L, Wu Z, Hosseini Bai S. 2016. Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Glob Change Biol 22:3157–3169.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Matt Gebert, Jessica Henley, Victoria Ochoa and Beatriz Gozalo for their help with laboratory analyses. We also want to thank Lynn Riedel, Julie Larson, Katy Waechter and Drs. David Buckner and Brian Anacker for their help with soil sampling in the chronosequence from Colorado, and to the City of Boulder Open Space and Mountain Parks for allowing us to conduct these collections. This research received funding from the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement 702057. M.D. was supported by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU-15/00392). M.D. and F.T.M. are supported by the European Research Council (Consolidator Grant Agreement No 647038, BIODESERT). M.D-B. is supported by a Large Research Grant from the British Ecological Society (grant agreement n° LRA17\1193, MUSGONET). F.T.M and M.D-B. acknowledge support from the Spanish Ministry (project CGL2017-88124-R). PGP and M.D-B. are supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-024766-I and RYC2018-025483-I, respectively). F.T.M. acknowledges support from the Generalitat Valenciana (CIDEGENT/2018/041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Dacal.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Author Contributions

M.D., M.D.-B. and P.G.P developed the original idea of the analyses presented in the manuscript. M.D.-B. designed the field study and wrote the grant that funded the work. J.B. conducted the laboratory work with inputs from M.D.-B and A.G. M.D. performed the statistical analyses, with inputs from M.D.-B., F.T.M and P.G.P. All authors including A.A.B. contributed to data interpretation. M.D. wrote the first version of the manuscript, which was revised by all co-authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dacal, M., Delgado-Baquerizo, M., Barquero, J. et al. Temperature Increases Soil Respiration Across Ecosystem Types and Soil Development, But Soil Properties Determine the Magnitude of This Effect. Ecosystems 25, 184–198 (2022). https://doi.org/10.1007/s10021-021-00648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00648-2

Keywords

Navigation