Skip to main content
Log in

Weighted Triangle-free 2-matching Problem with Edge-disjoint Forbidden Triangles

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The weighted \({\mathcal {T}}\)-free 2-matching problem is the following problem: given an undirected graph G, a weight function on its edge set, and a set \({\mathcal {T}}\) of triangles in G, find a maximum weight 2-matching containing no triangle in \({\mathcal {T}}\). When \({\mathcal {T}}\) is the set of all triangles in G, this problem is known as the weighted triangle-free 2-matching problem, which is a long-standing open problem. A main contribution of this paper is to give the first polynomial-time algorithm for the weighted \({\mathcal {T}}\)-free 2-matching problem under the assumption that \({\mathcal {T}}\) is a set of edge-disjoint triangles. In our algorithm, a key ingredient is to give an extended formulation representing the solution set, that is, we introduce new variables and represent the convex hull of the feasible solutions as a projection of another polytope in a higher dimensional space. Although our extended formulation has exponentially many inequalities, we show that the separation problem can be solved in polynomial time, which leads to a polynomial-time algorithm for the weighted \({\mathcal {T}}\)-free 2-matching problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Although such an edge set is often called a simple 2-matching in the literature, we call it a 2-matching to simplify the description.

References

  1. Babenko, Maxim A.: Improved algorithms for even factors and square-free simple \(b\)-matchings. Algorithmica 64(3), 362–383 (2012). https://doi.org/10.1007/s00453-012-9642-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Bérczi, Kristóf.: The triangle-free \(2\)-matching polytope of subcubic graphs. Technical Report TR-2012-2, Egerváry Research Group (2012)

  3. Bérczi, Kristóf, Yusuke, K.: An algorithm for \((n-3)\)-connectivity augmentation problem: jump system approach. J. Comb. Theory Ser. B 102(3), 565–587 (2012). https://doi.org/10.1016/j.jctb.2011.08.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Bérczi, K., Végh, L.A.: Restricted \(b\)-matchings in degree-bounded graphs. In: Integer Programming and Combinatorial Optimization, pp. 43–56. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13036-6_4

    Chapter  Google Scholar 

  5. Conforti, M., Cornuéjols, G., Zambelli, Giacomo: Extended formulations in combinatorial optimization. 4OR 8(1), 1–48 (2010). https://doi.org/10.1007/s10288-010-0122-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornuéjols, G., Pulleyblank, W.: A matching problem with side conditions. Discrete Math. 29(2), 135–159 (1980). https://doi.org/10.1016/0012-365x(80)90002-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Cornuejols, G., Pulleyblank, W.: Perfect triangle-free 2-matchings. In: Mathematical Programming Studies, pp. 1–7. (1980). https://doi.org/10.1007/bfb0120901

    Chapter  Google Scholar 

  8. Cunningham, William H.: Matching, matroids, and extensions. Math. Program. 91(3), 515–542 (2002). https://doi.org/10.1007/s101070100256

    Article  MathSciNet  MATH  Google Scholar 

  9. Edmonds, Jack: Maximum matching and a polyhedron with \(0, 1\)-vertices. J. Res. Natl Bur. Stand. B 69, 125–130 (1965)

    Article  MathSciNet  Google Scholar 

  10. Frank, András: Restricted \(t\)-matchings in bipartite graphs. Discrete Appl. Math. 131(2), 337–346 (2003). https://doi.org/10.1016/s0166-218x(02)00461-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, New York (1988)

    Book  Google Scholar 

  12. Hartvigsen, D.: Extensions of Matching Theory. PhD thesis, Carnegie Mellon University (1984)

  13. Hartvigsen, D.: The square-free 2-factor problem in bipartite graphs. In: Integer Programming and Combinatorial Optimization, pp. 234–241. Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8_18

    Chapter  Google Scholar 

  14. Hartvigsen, David: Finding maximum square-free 2-matchings in bipartite graphs. J. Comb. Theory Ser. B 96(5), 693–705 (2006). https://doi.org/10.1016/j.jctb.2006.01.004

    Article  MathSciNet  MATH  Google Scholar 

  15. Hartvigsen, David, Li, Y.: Polyhedron of triangle-free simple 2-matchings in subcubic graphs. Math. Program. 138(1–2), 43–82 (2012). https://doi.org/10.1007/s10107-012-0516-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Iwata, S., Kobayashi, Y.: A weighted linear matroid parity algorithm. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2017, pp. 264–276. ACM Press (2017). https://doi.org/10.1145/3055399.3055436

  17. Kaibel, V.: Extended formulations in combinatorial optimization. Technical report, arXiv:1104.1023, (2011)

  18. Király, Z.: \({C}_4\)–free 2-factors in bipartite graphs. Technical Report TR-2012-2, Egerváry Research Group (1999)

  19. Kobayashi, Y.: A simple algorithm for finding a maximum triangle-free \(2\)-matching in subcubic graphs. Discrete Optim. 7(4), 197–202 (2010). https://doi.org/10.1016/j.disopt.2010.04.001

    Article  MathSciNet  MATH  Google Scholar 

  20. Kobayashi, Y.: Triangle-free 2-matchings and M-concave functions on jump systems. Discrete Appl. Math. 175, 35–42 (2014). https://doi.org/10.1016/j.dam.2014.05.016

    Article  MathSciNet  MATH  Google Scholar 

  21. Kobayashi, Y.: Weighted triangle-free 2-matching problem with edge-disjoint forbidden triangles. In: Integer Programming and Combinatorial Optimization, pp. 280–293. Springer, New York (2020). https://doi.org/10.1007/978-3-030-45771-6_22

    Chapter  Google Scholar 

  22. Kobayashi, Y., Szabó, J., Takazawa, K.: A proof of Cunningham’s conjecture on restricted subgraphs and jump systems. J. Comb. Theory Ser B 102(4), 948–966 (2012). https://doi.org/10.1016/j.jctb.2012.03.003

    Article  MathSciNet  MATH  Google Scholar 

  23. Letchford, A.N., Reinelt, G., Theis, D.O.: Odd minimum cut sets and \(b\)-matchings revisited. SIAM J. Discrete Math. 22(4), 1480–1487 (2008). https://doi.org/10.1137/060664793

    Article  MathSciNet  MATH  Google Scholar 

  24. Makai, M.: On maximum cost \({K}_{t, t}\)-free \(t\)-matchings of bipartite graphs. SIAM J. Discrete Math. 21(2), 349–360 (2007). https://doi.org/10.1137/060652282

    Article  MathSciNet  MATH  Google Scholar 

  25. Nam, Y.: Matching Theory: Subgraphs With Degree Constraints And Other Properties. PhD thesis, University of British Columbia (1994)

  26. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and \(b\)-matchings. Math. Oper. Res. 7(1), 67–80 (1982)

    Article  MathSciNet  Google Scholar 

  27. Pap, G.: Combinatorial algorithms for matchings, even factors and square-free 2-factors. Math. Program. 110(1), 57–69 (2007). https://doi.org/10.1007/s10107-006-0053-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Takazawa, K.: A weighted \({K}_{t, t}\)-free \(t\)-factor algorithm for bipartite graphs. Math. Oper. Res. 34(2), 351–362 (2009). https://doi.org/10.1287/moor.1080.0365

    Article  MathSciNet  MATH  Google Scholar 

  29. Takazawa, K.: Decomposition theorems for square-free 2-matchings in bipartite graphs. Discrete Appl. Math. 233, 215–223 (2017). https://doi.org/10.1016/j.dam.2017.07.035

    Article  MathSciNet  MATH  Google Scholar 

  30. Takazawa, K.: Excluded \(t\)-factors in bipartite graphs: a unified framework for nonbipartite matchings and restricted 2-matchings. In: Integer Programming and Combinatorial Optimization, pp. 430–441. Springer, New York (2017). https://doi.org/10.1007/978-3-319-59250-3_35

    Chapter  MATH  Google Scholar 

  31. Takazawa, K.: Finding a maximum 2-matching excluding prescribed cycles in bipartite graphs. Discrete Optim. 26, 26–40 (2017). https://doi.org/10.1016/j.disopt.2017.05.003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Kobayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appears in [21]. Supported by JSPS KAKENHI Grant Numbers JP16K16010, JP16H03118, JP18H05291, and JP20K11692, Japan.

Appendices

A Proof of Lemma 5

By symmetry, it suffices to consider \((G_1, b_1, {\mathcal {T}}_1)\). Since the tightness of (10) for \((S^*, F^*_0, F^*_1)\) implies that \(x_1(\delta _{G_1}(r)) = 1\), we can easily see that \((x_1, y_1)\) satisfies (1), (2), (4)–(7). In what follows, we consider (10) for \((x_1, y_1)\) in \((G_1, b_1, {\mathcal {T}}_1)\). For edge sets \(F'_0, F'_1 \subseteq E_1\), we denote \(g(F'_0, F'_1) = \sum _{e \in F'_0} x_1(e) + \sum _{e \in F'_1} (1-x_1(e))\) to simplify the notation. For \((S', F'_0, F'_1) \in {\mathcal {F}}_1\), let \(h(S', F'_0, F'_1)\) denote the left-hand side of (10). To derive a contradiction, let \((S', F'_0, F'_1) \in {\mathcal {F}}_1\) be a minimizer of \(h(S', F'_0, F'_1)\) and assume that \(h(S', F'_0, F'_1) < 1\). By changing the roles of \(S'\) and \(V' {\setminus } S'\) if necessary, we may assume that \(r \not \in S'\).

For \(T \in {\mathcal {T}}^+_{S^*}\), let \(v_1, v_2, v_3, \alpha , \beta \), and \(\gamma \) be as in Figs. 710. Let \(G'_T = (V'_T, E'_T)\) be the subgraph of \(G_1\) corresponding to T, that is, the subgraph induced by \(\{r, p_1, p_2, v_2, v_3\}\) (Fig. 7), \(\{r, p_3, v_1 \}\) (Fig. 8), \(\{r, p_1, p_2, p_3, v_2, v_3\}\) (Fig. 9), or \(\{r, p_4, v_1 \}\) (Fig. 10). Let \({\hat{S}} = S' \cap (V'_T {\setminus } \{v_1, v_2, v_3\})\), \({\hat{F}}_0 = F'_0 \cap E'_T\), and \({\hat{F}}_1 = F'_1 \cap E'_T\).

We show the following properties (P1)–(P9) in Sect. 1, and show that \((x_1, y_1)\) satisfies (10) by using these properties in Sect. 2.

  1. (P1)

    If T is of type (A) or (B) and \(v_2, v_3 \not \in S'\), then \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even.

  2. (P2)

    If T is of type (A), \(v_2, v_3 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even, then \(g({\hat{F}}_0, {\hat{F}}_1) \ge \min \{x(\alpha )+x(\gamma ), 2-x(\alpha )-x(\gamma ) - 2 y_\beta \}\).

  3. (P3)

    If T is of type (B), \(v_2, v_3 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even, then \(g({\hat{F}}_0, {\hat{F}}_1) \ge y_{\alpha } + y_{\gamma } + y_{\alpha \beta } + y_{\beta \gamma }\).

  4. (P4)

    If T is of type (A) or (B), \(v_2, v_3 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd, then \(g({\hat{F}}_0, {\hat{F}}_1) \ge y_\emptyset + y_\beta + y_{\alpha \gamma }\).

  5. (P5)

    If T is of type (A) or (B), \(v_2 \in S'\), \(v_3 \not \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even, then \(g({\hat{F}}_0, {\hat{F}}_1) \ge \min \{ x(\alpha )+x(\beta ), 2 - x(\alpha ) - x(\beta ) - 2 y_{\gamma }\}\).

  6. (P6)

    If T is of type (A) or (B), \(v_2 \in S'\), \(v_3 \not \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd, then \(g({\hat{F}}_0, {\hat{F}}_1) \ge y_\emptyset + y_\gamma + y_{\alpha \beta }\).

  7. (P7)

    If T is of type (A\('\)) or type (B\('\)) and \(v_1 \not \in S'\), then \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even.

  8. (P8)

    If T is of type (A\('\)) or type (B\('\)), \(v_1 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even, then \(g({\hat{F}}_0, {\hat{F}}_1) = \min \{x(\alpha )+x(\gamma ), 2-x(\alpha )-x(\gamma ) - 2 y_\beta \}\).

  9. (P9)

    If T is of type (A\('\)) or type (B\('\)), \(v_1 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd, then \(g({\hat{F}}_0, {\hat{F}}_1) = y_\emptyset + y_\beta + y_{\alpha \gamma }\).

Note that each \(T \in {\mathcal {T}}^+_{S^*}\) satisfies exactly one of (P1)–(P9) by changing the labels of \(v_2\) and \(v_3\) if necessary.

1.1 A.1 Proofs of (P1)–(P9)

1.1.1 A.1.1 When T is of type (A)

We first consider the case when T is of type (A).

Proof of (P1). Suppose that T is of type (A) and \(v_2, v_3 \not \in S'\). If \(b_1({{\hat{S}}}) + |{{\hat{F}}}_1|\) is odd, then either \(p_1 \in {{\hat{S}}}\) and \(|{{\hat{F}}}_1 \cap \delta _{G_1}(p_1)|\) is even or \(p_2 \in {{\hat{S}}}\) and \(|{{\hat{F}}}_1 \cap \delta _{G_1}(p_2)|\) is even. In the former case, \(h(S', F'_0, F'_1) \ge \min \{x_1(e_1) + x_1(e_5), 2 - x_1 (e_1) - x_1(e_5) \} = 1\), which is a contradiction. The same argument can be applied to the latter case. Therefore, \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even.

Proof of (P2). Suppose that T is of type (A), \(v_2, v_3 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even. If \(p_1 \not \in S'\), then we define \((S'', F''_0, F''_1) \in {\mathcal {F}}_1\) as \((S'', F''_0, F''_1) = (S' \cup \{p_1\}, F'_0 {\setminus } \{e_5\}, F'_1\cup \{e_1\})\) if \(e_5 \in F'_0\) and \((S'', F''_0, F''_1) = (S' \cup \{p_1\}, F'_0 \cup \{e_1\}, F'_1 {\setminus } \{e_5\})\) if \(e_5 \in F'_1\). Since \(h(S'', F''_0, F''_1) = h(S', F'_0, F'_1)\) holds, by replacing \((S', F'_0, F'_1)\) with \((S'', F''_0, F''_1)\), we may assume that \(p_1 \in S'\). Similarly, we may assume that \(p_2 \in S'\), which implies that \({{\hat{S}}} = \{p_1, p_2\}\), \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_2, e_3, e_4\}\), and \(|{{\hat{F}}}_1|\) is even. Then, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \min \{ x(\alpha ) + x(\gamma ), 2-x(\alpha )-x(\gamma ) - 2 y_\beta \}\) by the following case analysis.

  • If \({{\hat{F}}}_1 = \emptyset \), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = x_1(e_1) + x_1(e_2) + x_1(e_3) + x_1(e_4) = 2-x(\alpha )-x(\gamma ) - 2 y_\beta \).

  • If \(|{{\hat{F}}}_1| \ge 2\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 2 - (x_1(e_1) + x_1(e_2) + x_1(e_3) + x_1(e_4)) = x(\alpha ) + x(\gamma ) + 2 y_\beta \ge x(\alpha ) + x(\gamma )\).

Proof of (P4). Suppose that T is of type (A), \(v_2, v_3 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd. In the same way as (P2), we may assume that \({{\hat{S}}} = \{p_1, p_2\}\), \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_2, e_3, e_4\}\), and \(|{{\hat{F}}}_1|\) is odd. Then, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge y_\emptyset + y_\beta + y_{\alpha \gamma }\) by the following case analysis and by the symmetry of \(v_2\) and \(v_3\).

  • If \(|{{\hat{F}}}_1| = 3\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 3 - (x_1(e_1) + x_1(e_2) + x_1(e_3) + x_1(e_4)) \ge 1 \ge y_\emptyset + y_\beta + y_{\alpha \gamma }\).

  • If \({{\hat{F}}}_1 = \{e_1\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge (1 - x_1(e_1)) + x_1(e_2) \ge y_\emptyset + y_\beta + y_{\alpha \gamma }\).

  • If \({{\hat{F}}}_1 = \{e_3\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 1-x_1(e_3) \ge y_\emptyset + y_\beta + y_{\alpha \gamma }\).

Proof of (P5). Suppose that T is of type (A), \(v_2 \in S'\), \(v_3 \not \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even. In the same way as (P2), we may assume that \(p_1 \in S'\). If \(p_2 \in S'\), then \(b_1(p_2) + |F'_1 \cap \delta _{G_1}(p_2)|\) is even by the same calculation as (P1). Therefore, we may assume that \(p_2 \not \in S'\), since otherwise we can replace \((S', F'_0, F'_1)\) with \((S' {\setminus } \{p_2\}, F'_0 {\setminus } \delta _{G_1}(p_2), F'_1{\setminus } \delta _{G_1}(p_2))\) without increasing the value of \(h(S', F'_0, F'_1)\). That is, we may assume that \({{\hat{S}}} = \{p_1\}\), \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_3\}\), and \(|{{\hat{F}}}_1|\) is odd. Then, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \min \{(1 - x_1(e_1)) + x_1(e_3), x_1(e_1) + (1 - x_1(e_3)) \} = \min \{ x(\alpha )+x(\beta ), 2 - x(\alpha ) - x(\beta ) \} \ge \min \{ x(\alpha )+x(\beta ), 2 - x(\alpha ) - x(\beta ) - 2 y_{\gamma }\}\).

Proof of (P6). Suppose that T is of type (A), \(v_2 \in S'\), \(v_3 \not \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd. In the same way as (P5), we may assume that \({{\hat{S}}} = \{p_1\}\), \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_3\}\), and \(|{{\hat{F}}}_1|\) is even. Then, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \min \{ x_1(e_1) + x_1(e_3), 2 - x_1(e_1) - x_1(e_3) \} = \min \{ y_\emptyset + y_\gamma + y_{\alpha \beta }, 2 - (y_\emptyset + y_\gamma + y_{\alpha \beta })\} = y_\emptyset + y_\gamma + y_{\alpha \beta }\).

1.1.2 A.1.2 When T is of type (A\('\))

Second, we consider the case when T is of type (A\('\)).

Proof of (P7). Suppose that T is of type (A\('\)) and \(v_1 \not \in S'\). If \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd, then \({{\hat{S}}} =\{p_3\}\) and \(|{{\hat{F}}}_1|\) is odd. This shows that \(h(S', F'_0, F'_1) \ge g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 1\) by the following case analysis, which is a contradiction.

  • If \({{\hat{F}}}_1 = \{e_1\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge (1-x_1(e_1)) + x_1(e_2) + x_1(e_9) \ge 1\). The same argument can be applied to the case of \({{\hat{F}}}_1 = \{e_2\}\) by the symmetry of \(\alpha \) and \(\gamma \).

  • If \({{\hat{F}}}_1 = \{e_i\}\) for some \(i \in \{3, 4, 8\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge (1 - x_1(e_i)) + x_1(e_9) \ge 1\).

  • If \({{\hat{F}}}_1 = \{e_9\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = 1 + 2 y_\emptyset \ge 1\).

  • If \(|{{\hat{F}}}_1| \ge 3\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 3 - (x_1(e_1) + x_1(e_2) + x_1(e_3) + x_1(e_4) + x_1(e_8) + x_1(e_9)) \ge 1\).

Therefore, \(b_1({{\hat{S}}}) + |{{\hat{F}}}_1|\) is even.

Proof of (P8). Suppose that T is of type (A\('\)), \(v_1 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even. Then, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \min \{ x(\alpha ) + x(\gamma ), 2-x(\alpha )-x(\gamma ) - 2 y_\beta \}\) by the following case analysis.

  • If \({{\hat{F}}}_0 = \{e_8, e_9\}\) and \({{\hat{F}}}_1 = \emptyset \), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = x_1(e_8) + x_1(e_9) = x(\alpha ) + x(\gamma )\).

  • If \({{\hat{F}}}_0 = \emptyset \) and \({{\hat{F}}}_1 = \{e_8, e_9\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = (1 - x_1(e_8)) + (1-x_1(e_9)) = 2-x(\alpha )-x(\gamma ) \ge 2-x(\alpha )-x(\gamma ) - 2 y_\beta \).

  • If \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_2, e_3, e_4\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \min \{ x(\alpha ) + x(\gamma ), 2-x(\alpha )-x(\gamma ) - 2 y_\beta \}\) by the same calculation as (P2) in Sect. 1.

Proof of (P9). Suppose that T is of type (A\('\)), \(v_1 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd. Then, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge y_\emptyset + y_\beta + y_{\alpha \gamma }\) by the following case analysis.

  • If \({{\hat{F}}}_0 = \{e_8 \}\) and \({{\hat{F}}}_1 = \{e_9 \}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = x_1(e_8) + (1-x_1(e_9)) = y_\emptyset + y_\beta + y_{\alpha \gamma }\).

  • If \({{\hat{F}}}_0 = \{e_9 \}\) and \({{\hat{F}}}_1 = \{e_8 \}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = (1 - x_1(e_8)) + x_1(e_9) \ge 1 \ge y_\emptyset + y_\beta + y_{\alpha \gamma }\).

  • If \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_2, e_3, e_4\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge y_\emptyset + y_\beta + y_{\alpha \gamma }\) by the same calculation as (P4) in Sect. 1.

1.1.3 A.1.3 When T is of type (B)

Third, we consider the case when T is of type (B). Let \(G^+=(V^+, E^+)\) be the graph obtained from \(G'_T = (V'_T, E'_T)\) in Fig. 9 by adding a new vertex \(r^*\), edges \(e_{11}= r r^*\), \(e_{12}= v_2 r^*\), \(e_{13}= v_3 r^*\), and self-loops \(e_{14}, e_{15}, e_{16}\) that are incident to \(v_2\), \(v_3\), and \(r^*\), respectively (Fig. 12). We define \(b_T: V^+ \rightarrow {\mathbf {Z}}_{\ge 0}\) as \(b_T(v) = 1\) for \(v \in \{r, p_1, p_2, p_3\}\) and \(b_T(v) = 2\) for \(v \in \{r^*, v_2, v_3\}\). We also define \(x_T: E^+ \rightarrow {\mathbf {Z}}_{\ge 0}\) as \(x_T(e) = x_1(e)\) for \(e \in E'_T\) and \(x_T(e_{11}) = y_{\alpha } + y_{\gamma } + y_{\alpha \beta } + y_{\beta \gamma }\), \(x_T(e_{12}) = y_{\alpha } + y_{\beta } + y_{\alpha \gamma } + y_{\beta \gamma }\), \(x_T(e_{13}) = y_{\beta } + y_{\gamma } + y_{\alpha \beta } + y_{\alpha \gamma }\), \(x_T(e_{14}) = y_{\emptyset } + y_{\gamma }\), \(x_T(e_{15}) = y_{\emptyset } + y_{\alpha }\), and \(x_T(e_{16}) = y_{\emptyset }\). For \(J \in {\mathcal {E}}_T\), define \(b_T\)-factors \(M_J\) in \(G^+\) as follows:

$$\begin{aligned}&M_{\emptyset } = \{e_1, e_7, e_{14}, e_{15}, e_{16} \},&M_{\alpha } = \{e_4, e_8, e_{11}, e_{12}, e_{15} \},&M_{\beta } = \{e_1, e_8, e_9, e_{12}, e_{13} \}, \\&M_{\gamma } = \{e_3, e_9, e_{11}, e_{13}, e_{14} \},&M_{\alpha \beta } = \{e_5, e_8, e_9, e_{11}, e_{13} \},&M_{\alpha \gamma } = \{e_2, e_8, e_9, e_{12}, e_{13} \}, \\&M_{\beta \gamma } = \{e_6, e_8, e_9, e_{11}, e_{12}\}.&&\end{aligned}$$

Then, we obtain \(\sum _{J \in {\mathcal {E}}_T} y_1(J) =1\) and \(\sum _{J \in {\mathcal {E}}_T} y_1(J) x_{M_J} = x_T\), where \(x_{M_J} \in {\mathbf {R}}^{E^+}\) is the characteristic vector of \(M_J\). This shows that \(x_T\) is in the \(b_T\)-factor polytope in \(G^+\). Therefore, \(x_T\) satisfies (3) with respect to \(G^+\) and \(b_T\). We now show (P1), (P3), (P4), (P5), and (P6).

Fig. 12
figure 12

Construction of \(G^+\)

Proof of (P1). Suppose that T is of type (B) and \(v_2, v_3 \not \in S'\). If \(b_1({{\hat{S}}}) + |{{\hat{F}}}_1|\) is odd, then \(b_T({{\hat{S}}}) + |{{\hat{F}}}_1|\) is also odd. Since \(x_T\) satisfies (3) with respect to \(G^+\) and \(b_T\), we obtain \(g({\hat{F}}_0, {\hat{F}}_1) \ge 1\). This shows that \(h(S', F'_0, F'_1) \ge 1\), which is a contradiction. Therefore, \(b_1({{\hat{S}}}) + |{{\hat{F}}}_1|\) is even.

Proof of (P3). Suppose that T is of type (B), \(v_2, v_3 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even. Since \(b_T({{\hat{S}}} \cup \{r^*, v_2, v_3\}) + |{{\hat{F}}}_1 \cup \{e_{11}\}|\) is odd and \(x_T\) satisfies (3), we obtain \(g({{\hat{F}}}_0, {{\hat{F}}}_1) + (1-x_T(e_{11})) \ge 1\). Therefore, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge x_T(e_{11}) = y_\alpha + y_\gamma + y_{\alpha \beta } + y_{\beta \gamma }\).

Proof of (P4). Suppose that T is of type (B), \(v_2, v_3 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd. Since \(b_T({{\hat{S}}} \cup \{r^*, v_2, v_3\}) + |{{\hat{F}}}_1|\) is odd and \(x_T\) satisfies (3), we obtain \(g({{\hat{F}}}_0, {{\hat{F}}}_1) + x_T(e_{11}) \ge 1\). Therefore, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 1 - x_T(e_{11}) = y_\emptyset + y_\beta + y_{\alpha \gamma }\).

Proof of (P5). Suppose that T is of type (B), \(v_2 \in S'\), \(v_3 \not \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even. If \({{\hat{S}}} \cap \{p_1, p_3\} \not = \emptyset \) and \(p_2 \not \in {{\hat{S}}}\), then we can add \(p_2\) to \(S'\) without decreasing the value of \(h(S', F'_0, F'_1)\). Therefore, we can show \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \{x(\alpha ) + x(\beta ), 2 - x(\alpha ) - x(\beta ) - 2 y_\gamma \}\) by the following case analysis.

  • Suppose that \({{\hat{S}}} = \{p_1, p_2, p_3\}\), which implies that \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_2, e_6, e_9\}\) and \(|{{\hat{F}}}_1|\) is odd.

    • If \({{\hat{F}}}_1 = \{e_i\}\) for \(i \in \{1, 2, 6\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge (1- x_1(e_i)) + x_1(e_9) \ge x(\alpha ) + x(\beta )\).

    • If \({{\hat{F}}}_1 = \{e_9\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = y_\alpha + y_\beta + y_{\alpha \gamma } + y_{\beta \gamma } + 2 y_\emptyset = 2 - x(\alpha ) - x(\beta ) - 2 y_\gamma \).

    • If \(|{{\hat{F}}}_1| = 3\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 3 - (x_1(e_1) + x_1(e_2) + x_1(e_6) + x_1(e_9)) \ge x(\alpha ) + x(\beta )\).

  • Suppose that \({{\hat{S}}} = \{p_1, p_2\}\), which implies that \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_2, e_4, e_6, e_7\}\) and \(|{{\hat{F}}}_1|\) is even.

    • If \({{\hat{F}}}_1 = \emptyset \), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = x_1(e_1) + x_1(e_2) + x_1(e_4) + x_1(e_6) + x_1(e_7) = 2 - x(\alpha ) - x(\beta ) - 2 y_\gamma \).

    • If \(|{{\hat{F}}}_1| \ge 2\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 2 - (x_1(e_1) + x_1(e_2) + x_1(e_4) + x_1(e_6) + x_1(e_7)) \ge x(\alpha ) + x(\beta )\).

  • Suppose that \({{\hat{S}}} = \{p_2\}\), which implies that \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_3, e_5, e_7\}\) and \(|{{\hat{F}}}_1|\) is odd.

    • If \({{\hat{F}}}_1 = \{e_i\}\) for \(i \in \{3, 7\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge (1- x_1(e_i)) + x_1(e_5) \ge x(\alpha ) + x(\beta )\).

    • If \({{\hat{F}}}_1 = \{e_5\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge (1-x_1(e_5)) + x_1(e_7) \ge 2 - x(\alpha ) - x(\beta ) - 2 y_\gamma \).

    • If \({{\hat{F}}}_1 = \{e_3, e_5, e_7\}\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = 3 - (x_1(e_3) + x_1(e_5) + x_1(e_7)) \ge x(\alpha ) + x(\beta )\).

  • Suppose that \({{\hat{S}}} = \{p_2, p_3\}\), which implies that \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_3, e_4, e_5, e_9\}\) and \(|{{\hat{F}}}_1|\) is even.

    • If \({{\hat{F}}}_1 = \emptyset \), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) = x_1(e_3) + x_1(e_4) + x_1(e_5) + x_1(e_9) = x(\alpha ) + x(\beta ) + 2 y_{\gamma } \ge x(\alpha ) + x(\beta )\).

    • If \(|{{\hat{F}}}_1| \ge 2\), then \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 2 - (x_1(e_3) + x_1(e_4) + x_1(e_5) + x_1(e_9)) = 2- x(\alpha ) - x(\beta ) - 2 y_{\gamma }\).

  • If \({{\hat{S}}} = \emptyset \), then \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_5, e_8\}\) and \(|{{\hat{F}}}_1|\) is even. Therefore, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \min \{x_1(e_5) + x_1(e_8), 2-x_1(e_5)-x_1(e_8) \} \ge \min \{x(\alpha ) + x(\beta ), 2 - x(\alpha ) - x(\beta ) - 2 y_\gamma \}\).

Proof of (P6). Suppose that T is of type (B), \(v_2 \in S'\), \(v_3 \not \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd. Since \(b_T({{\hat{S}}} \cup \{v_2 \}) + |{{\hat{F}}}_1|\) is odd and \(x_T\) satisfies (3), we obtain \(g({{\hat{F}}}_0, {{\hat{F}}}_1) + x_T(e_{12}) \ge 1\). Therefore, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 1 - x_T(e_{12}) = y_\emptyset + y_\gamma + y_{\alpha \beta }\).

1.1.4 A.1.4 When T is of type (B\('\))

Finally, we consider the case when T is of type (B\('\)).

Proof of (P7). Suppose that T is of type (B\('\)) and \(v_1 \not \in S'\). If \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd, then \({{\hat{S}}} =\{p_4\}\) and \(h(S', F'_0, F'_1) \ge \min \{x_1(e_1) + x_1(e_{10}), 2 - x_1(e_1) - x_1(e_{10})\} = 1\), which is a contradiction. Therefore, \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even.

Proof of (P8). Suppose that T is of type (B\('\)), \(v_1 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even. If \(p_4 \not \in S'\), then we define \((S'', F''_0, F''_1) \in {\mathcal {F}}_1\) as \((S'', F''_0, F''_1) = (S' \cup \{p_4\}, F'_0 {\setminus } \{e_{10}\}, F'_1\cup \{e_1\})\) if \(e_{10} \in F'_0\) and \((S'', F''_0, F''_1) = (S' \cup \{p_4\}, F'_0 \cup \{e_1\}, F'_1 {\setminus } \{e_{10}\})\) if \(e_{10} \in F'_1\). Since \(h(S'', F''_0, F''_1) = h(S', F'_0, F'_1)\), by replacing \((S', F'_0, F'_1)\) with \((S'', F''_0, F''_1)\), we may assume that \(p_4 \in S'\). Then, since \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_2\}\) and \(|{{\hat{F}}}_1|\) is odd, we obtain \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \min \{ (1-x_1(e_1)) + x_1(e_2), x_1(e_1) + (1-x_1(e_2)) \} \ge \min \{ x(\alpha ) + x(\gamma ), 2 - x(\alpha ) - x(\gamma ) - 2y_\beta \}\).

Proof of (P9). Suppose that T is of type (B\('\)), \(v_1 \in S'\), and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd. In the same way as (P8), we may assume that \({{\hat{S}}} = \{p_4\}\), \({{\hat{F}}}_0 \cup {{\hat{F}}}_1 = \{e_1, e_2\}\), and \(|{{\hat{F}}}_1|\) is even. Then, \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge \min \{ x_1(e_1) + x_1(e_2), (1-x_1(e_1)) + (1-x_1(e_2)) \} = \min \{ y_\emptyset + y_\beta + y_{\alpha \gamma }, 2 - (y_\emptyset + y_\beta + y_{\alpha \gamma })\} = y_\emptyset + y_\beta + y_{\alpha \gamma }\).

1.2 A.2 Condition (10)

Recall that \(r \not \in S'\) is assumed and note that \(x_1(\delta _{G_1}(r)) = 1\). Let \({\mathcal {T}}_{(P3)} \subseteq {\mathcal {T}}^+_{S^*}\) be the set of triangles satisfying the conditions in (P3), i.e., the set of triangles of type (B) such that \(v_2, v_3 \in S'\) and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is even. Since \(y_{\alpha } + y_{\gamma } + y_{\alpha \beta } + y_{\beta \gamma } = 1 - x_1(e^{T}_1) - x_1(e^{T}_2)\) holds for each triangle \(T \in {\mathcal {T}}^+_{S^*}\) of type (B), if there exist two triangles \(T, T' \in {\mathcal {T}}_{(P3)}\), then \(h(S', F'_0, F'_1) \ge (1- x_1(e^{T}_1) - x_1(e^{T}_2)) + (1- x_1(e^{T'}_1) - x_1(e^{T'}_2)) \ge 2 - x_1(\delta _{G_1}(r)) = 1\), which is a contradiction. Similarly, if there exists a triangle \(T \in {\mathcal {T}}_{(P3)}\) and an edge \(e \in (\delta _{G_1}(r) {\setminus } E'_{T}) \cap F'_1\), then \(h(S', F'_0, F'_1) \ge (1- x_1(e^{T}_1) - x_1(e^{T}_2)) + (1- x_1(e)) \ge 2 - x_1(\delta _{G_1}(r)) = 1\), which is a contradiction. Therefore, either \({\mathcal {T}}_{(P3)} = \emptyset \) holds or \({\mathcal {T}}_{(P3)}\) consists of exactly one triangle, say T, and \((\delta _{G_1}(r) {\setminus } E'_{T}) \cap F'_1 = \emptyset \).

Assume that \({\mathcal {T}}_{(P3)} = \{T\}\) and \((\delta _{G_1}(r) {\setminus } E'_{T}) \cap F'_1 = \emptyset \). Define \((S'', F''_0, F''_1) \in {\mathcal {F}}_1\) as \(S'' = S' \cup V'_{T}\), \(F''_0 = (F'_0 \triangle \delta _{G_1}(r)) {\setminus } E'_{T}\), and \(F''_1 = F'_1 {\setminus } E'_{T}\), where \(\triangle \) denotes the symmetric difference. Note that \((F''_0, F''_1)\) is a partition of \(\delta _{G_1} (S'')\), \(b_1(S'') + |F''_1| = (b_1 (S') + b_1({\hat{S}}) ) + (|F'_1| - |{{\hat{F}}}_1|) \equiv 1 \pmod {2}\), and \(h(S', F'_0, F'_1) - h(S'', F''_0, F''_1) \ge (1 - x_1(e^{T}_1) - x_1(e^{T}_2)) - x_1( \delta _{G_1}(r) {\setminus } \{ x_1(e^{T}_1), x_1(e^{T}_2)\}) = 0\). By these observations, \((S'', F''_0, F''_1) \in {\mathcal {F}}_1\) is also a minimizer of h. This shows that \((V'' {\setminus } S'', F''_0, F''_1) \in {\mathcal {F}}_1\) is a minimizer of h such that \(r \in V'' {\setminus } S''\). Furthermore, if a triangle \(T' \in {\mathcal {T}}^+_{S^*}\) satisfies the conditions in (P3) with respect to \((V'' {\setminus } S'', F''_0, F''_1)\), then \(T'\) is a triangle of type (B) such that \(v_2, v_3 \not \in S'\) and \(b_1({\hat{S}}) + |{{\hat{F}}}_1|\) is odd with respect to \((S', F'_0, F'_1)\), which contradicts (P1). Therefore, by replacing \((S', F'_0, F'_1)\) with \((V'' {\setminus } S'', F''_0, F''_1)\), we may assume that \({\mathcal {T}}_{(P3)} = \emptyset \).

In what follows, we construct \((S, F_0, F_1) \in {\mathcal {F}}\) for which (xy) violates (10) to derive a contradiction. We initialize \((S, F_0, F_1)\) as \(S = S' \cap V\), \(F_0 = F'_0 \cap E\), and \(F_1 = F'_1 \cap E\), and apply the following procedures for each triangle \(T \in {\mathcal {T}}^+_{S^*}\).

  • Suppose that T satisfies the condition in (P1) or (P7). In this case, we do nothing.

  • Suppose that T satisfies the condition in (P2) or (P8). If \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge x(\alpha ) + x(\gamma )\), then add \(\alpha \) and \(\gamma \) to \(F_0\). Otherwise, since \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 2-x(\alpha )-x(\gamma ) - 2 y_\beta \), add \(\alpha \) and \(\gamma \) to \(F_1\).

  • Suppose that T satisfies the condition in (P4) or (P9). In this case, add \(\alpha \) to \(F_0\) and add \(\gamma \) to \(F_1\).

  • Suppose that T satisfies the condition in (P5). If \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge x(\alpha ) + x(\beta )\), then add \(\alpha \) and \(\beta \) to \(F_0\). Otherwise, since \(g({{\hat{F}}}_0, {{\hat{F}}}_1) \ge 2-x(\alpha )-x(\beta ) - 2 y_\gamma \), add \(\alpha \) and \(\beta \) to \(F_1\).

  • Suppose that T satisfies the condition in (P6). In this case, add \(\alpha \) to \(F_0\) and add \(\beta \) to \(F_1\).

Note that exactly one of the above procedures is applied for each \(T \in {\mathcal {T}}^+_{S^*}\), because \({\mathcal {T}}_{(P3)} = \emptyset \).

Then, we see that \((S, F_0, F_1) \in {\mathcal {F}}\) holds and the left-hand side of (10) with respect to \((S, F_0, F_1)\) is at most \(h(S', F'_0, F'_1)\) by (P1)–(P9). Since \(h(S', F'_0, F'_1) < 1\) is assumed, (xy) violates (10) for \((S, F_0, F_1) \in {\mathcal {F}}\), which is a contradiction. \(\square \)

B Proof of Lemma 6

We first show that \(M_1 \oplus M_2\) forms a \({\mathcal {T}}\)-free b-factor. We can easily see that replacing \((M_1 \cup M_2) \cap \{e^f \mid f \in {\tilde{F}}^*_0\}\) with \(\{ f \in {\tilde{F}}^*_0 \mid {e}^f \in M_1 \cap M_2 \}\) does not affect the degrees of vertices in V. Since \(M_1 \cup M_2\) contains exactly one of \(\{e^f_u, e^f_v\}\) or \({e}^f_r (= {e}^f_{r'})\) for \(f = uv \in {\tilde{F}}^*_1\), replacing \((M_1 \cup M_2) \cap \{e^f_u, e^f_r, e^f_v \mid f = uv \in {\tilde{F}}^*_1\}\) with \(\{ f \in {\tilde{F}}^*_1 \mid e^f_r \not \in M_1 \cap M_2 \}\) does not affect the degrees of vertices in V.

For every \(T \in {\mathcal {T}}^+_{S^*}\) of type (A) or (A\('\)), since \(|\varphi (M_1, M_2, T) \cap \{\alpha , \gamma \}| = |M_T \cap \{e_8, e_9\}|\), \(|\varphi (M_1, M_2, T) \cap \{\alpha , \beta \}| = |M_T \cap \{e_3, e_5\}|\), and \(|\varphi (M_1, M_2, T) \cap \{\beta , \gamma \}| = |M_T \cap \{e_4, e_6\}|\) hold by the definition of \(\varphi (M_1, M_2, T)\), replacing \(M_T\) with \(\varphi (M_1, M_2, T)\) does not affect the degrees of vertices in V.

Furthermore, for every \(T \in {\mathcal {T}}^+_{S^*}\) of type (B) or (B\('\)), since \(|\varphi (M_1, M_2, T) \cap \{\alpha , \gamma \}| = |M_T \cap \{e_2, e_{10}\}|\), \(|\varphi (M_1, M_2, T) \cap \{\alpha , \beta \}| = |M_T \cap \{e_5, e_8\}|\), and \(|\varphi (M_1, M_2, T) \cap \{\beta , \gamma \}| = |M_T \cap \{e_6, e_9\}|\) hold by the definition of \(\varphi (M_1, M_2, T)\), replacing \(M_T\) with \(\varphi (M_1, M_2, T)\) does not affect the degrees of vertices in V.

Since \(b(v) = b_1(v)\) for \(v \in S^*\) and \(b(v) = b_2(v)\) for \(v \in V^* {\setminus } S^*\), this shows that \(M_1 \oplus M_2\) forms a b-factor. Since \(M_j\) is \({\mathcal {T}}_j\)-free for \(j \in \{1, 2\}\), \(M_1 \oplus M_2\) is a \({\mathcal {T}}\)-free b-factor.

We next show that \(x = \sum _{(M_1, M_2) \in {\mathcal {M}}} \lambda _{(M_1, M_2)} x_{M_1 \oplus M_2}\). By the definitions of \(x_1, x_2, M_1 \oplus M_2\), and \(\lambda _{(M_1, M_2)}\), it holds that

$$\begin{aligned} x(e) = \sum _{(M_1, M_2) \in {\mathcal {M}}} \lambda _{(M_1, M_2)} x_{M_1 \oplus M_2}(e) \end{aligned}$$
(11)

for \(e \in E {\setminus } \bigcup _{T \in {\mathcal {T}}^+_{S^*}} E(T)\).

Let \(T \in {\mathcal {T}}^+_{S^*}\) be a triangle of type (A) for \((G_1, b_1, {\mathcal {T}}_1)\) and let \(\alpha , \beta \), and \(\gamma \) be as in Figs. 7 and 8. By the definition of \(\varphi (M_1, M_2, T)\), we obtain

$$\begin{aligned}&\sum _{(M_1, M_2) \in {\mathcal {M}}} \lambda _{(M_1, M_2)} x_{M_1 \oplus M_2}(\beta )\\&\qquad = \sum \{ \lambda _{(M_1, M_2)} \mid \varphi (M_1, M_2, T) = \{\alpha , \beta \}, \{\beta , \gamma \},\hbox { or }\{\beta \} \} \\&\qquad = x_1(e_3) + x_1(e_4) + x_2(e_7) = y_{\alpha \beta } + y_{\beta \gamma } + y_\beta = x(\beta ). \end{aligned}$$

We also obtain

$$\begin{aligned}&\sum _{(M_1, M_2) \in {\mathcal {M}}} \lambda _{(M_1, M_2)} x_{M_1 \oplus M_2}(\alpha )\\&\qquad = \sum \{ \lambda _{(M_1, M_2)} \mid \varphi (M_1, M_2, T) \not = \{\gamma \}, \{\beta , \gamma \}, \{\beta \} \} \\&\qquad = 1 - x_1(e_1) - x_1(e_4) - x_2(e_7) = 1- y_{\emptyset } - y_{\gamma } - y_{\beta \gamma } - y_\beta = x(\alpha ). \end{aligned}$$

Since a similar equality holds for \(\gamma \) by symmetry, (11) holds for \(e \in \{\alpha , \beta , \gamma \}\). Since T is a triangle of type (A\('\)’) for \((G_1, b_1, {\mathcal {T}}_1)\) if and only if it is of type (A) for \((G_2, b_2, {\mathcal {T}}_2)\), the same argument can be applied when T is a triangle of type (A\('\)) for \((G_1, b_1, {\mathcal {T}}_1)\).

Let \(T \in {\mathcal {T}}^+_{S^*}\) be a triangle of type (B) for \((G_1, b_1, {\mathcal {T}}_1)\) and let \(\alpha , \beta \), and \(\gamma \) be as in Figs. 9 and 10. By the definition of \(\varphi (M_1, M_2, T)\), we obtain

$$\begin{aligned}&\sum _{(M_1, M_2) \in {\mathcal {M}}} \lambda _{(M_1, M_2)} x_{M_1 \oplus M_2}(\beta )\\&\quad = \sum \{ \lambda _{(M_1, M_2)} \mid \varphi (M_1, M_2, T) \not = \emptyset , \{\alpha \}, \{\gamma \}, \{\alpha , \gamma \} \} \\&\quad = 1 - x_1(e_2) - x_1(e_3) - x_1(e_4) - x_1(e_7) = 1 - y_{\alpha \gamma } - y_{\gamma } - y_{\alpha } - y_{\emptyset } = x(\beta ). \end{aligned}$$

We also obtain

$$\begin{aligned}&\sum _{(M_1, M_2) \in {\mathcal {M}}} \lambda _{(M_1, M_2)} x_{M_1 \oplus M_2}(\alpha )\\&\quad = \sum \{ \lambda _{(M_1, M_2)} \mid \varphi (M_1, M_2, T) = \{\alpha \}, \{\alpha , \beta \},\hbox { or }\{\alpha , \gamma \} \} \\&\quad = x_1(e_2) + x_1(e_4) + x_1(e_5) = y_{\alpha \gamma } + y_{\alpha } + y_{\alpha \beta } = x(\alpha ). \end{aligned}$$

Since a similar equality holds for \(\gamma \) by symmetry, (11) holds for \(e \in \{\alpha , \beta , \gamma \}\). The same argument can be applied when T is a triangle of type (B\('\)) for \((G_1, b_1, {\mathcal {T}}_1)\).

Therefore, (11) holds for every \(e \in E\), which complete the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, Y. Weighted Triangle-free 2-matching Problem with Edge-disjoint Forbidden Triangles. Math. Program. 192, 675–702 (2022). https://doi.org/10.1007/s10107-021-01661-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-021-01661-y

Keywords

Mathematics Subject Classification

Navigation