Skip to main content
Log in

A Method for Predicting the Parameters of Plastic Deformation of Dispersedly Reinforced Materials by Using a Modified Mori–Tanaka Model

  • Published:
Mechanics of Composite Materials Aims and scope

A modified Mori–Tanaka model to predict the average mechanical characteristics for dispersedly reinforced materials considering the physical nonlinearity, especially plasticity, of its constituents is proposed. A comparison of theoretical results with experimental data showed that this modification provides a sufficiently high accuracy of calculated estimates for parameters of the stress-strain state of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T. Mori and K. Tanaka, “Average stress in the matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, 571-574 (1973).

    Article  Google Scholar 

  2. S. V. Shil’ko, V. E. Starzhinskii, E. M. Petrokovets, and D. A. Chernous, “Two-level calculation method for triboconjugations made from dispersiedly reinforced composites. Part 2,” Friction and Wear, 35, No. 1, 52-61 (2014).

    Google Scholar 

  3. S. V. Shil’ko, D. A. Chernous, and S. V. Panin, “Mesomechanical analysis of short-fiber-reinforced polymer composites with account of interphase layer materials,” Mech. Compos. Mater. 48, No. 2, 171-178 (2012).

    Article  Google Scholar 

  4. S. Koyama, S. Katano, I. Saiki, and T. Iwakuma, “A modification of the Mori–Tanaka estimate of average elastoplastic behavior of composites and polycrystals with interfacial debonding,” Mech. Materials, 43, 538-555 (2011).

    Article  Google Scholar 

  5. M. Takayanagi, S. Uemura, and S. Mimami, “Application of the equivalent model method to dynamic rheo-optical properties of crystalline polymers,” J. Polymer Sci., 5, 113-120 (1964).

    Google Scholar 

  6. J. Manson and L. Sperling, Polymer Blends and Composites, New York; London: Plenum Press (1976).

  7. D. A. Chernous and S. V. Shil’ko, “Modified Takanyagi model of deformation of dispersedly filled composites,” Mekh. Kompoz. Mater. Strukt., 18, No. 4, 543-551 (2012).

    Google Scholar 

  8. A. F. Fedotov, “Application of the deformation model of porous materials to the calculation of effective elastic moduli of granular composites,” Mekh. Kompoz. Mater. Strukt., 17, No. 1, 3-18 (2011).

    Google Scholar 

  9. A. F. Fedotov, “Application of the deformation model of porous materials to the calculation of plastic properties of granular composites,” Mekh. Kompoz. Mater. Strukt., 18, No. 4, 508-526 (2012).

    Google Scholar 

  10. A. Kelli, Strong Solids, Oxford: Clarendon Press (1973).

    Google Scholar 

  11. I. G. Watson, P. D. Lee, R. J. Dashwood, and P. Young, “Simulation of the mechanical properties of an aluminum matrix composite using X-ray microtomography,” Metall. Mater. Trans. A., 37A, 551-558 (2006).

    Article  CAS  Google Scholar 

  12. E. Soppa, P. Doumalin, P. Binkele, et al., “Experimental and numerical characterization of in-plane deformation in two-phase materials,” Comput. Mater. Science, 21, 261-275 (2001).

    Article  CAS  Google Scholar 

  13. A. A. Ilyushin and V. S. Lensky, Strength of Materials, Oxford: Pergamon Press, (1967).

    Google Scholar 

  14. R. Christensen Introduction to the mechanics of composites [Russian translation], M, Mir (1982).

  15. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. Roy. Soc. Ser. A., 241, 376-396 (1957).

    Google Scholar 

  16. S. V. Shil’ko, D. A. Chernous, “Modified Takanyagi model of deformation of dispersedly filled composites. Part 2. Determination of the elasticity moduli and yield point taking into account the interphase layer,” Mekh. Kompoz. Mater. Strukt., 19, No. 2, 181-195 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shil’ko.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 57, No. 2, pp. 223-232, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shil’ko, S.V., Chernous, D.A., Panin, S.V. et al. A Method for Predicting the Parameters of Plastic Deformation of Dispersedly Reinforced Materials by Using a Modified Mori–Tanaka Model. Mech Compos Mater 57, 153–160 (2021). https://doi.org/10.1007/s11029-021-09942-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09942-5

Keywords

Navigation