Skip to main content
Log in

Numerical and Experimental Investigation of the Burst Resistance of Glass-Fiber Thermoplastic Composite Pipes under Internal Pressure

  • Published:
Mechanics of Composite Materials Aims and scope

Experimental tests and numerical studies were performed to investigate the burst performance of thermoplastic composite pipes (TCPs) under internal pressure. A progressive damage model is established to predict the burst behavior of TCPs, in which different failure criteria and the damage evolution of a composite material are considered and directly incorporated into the ABAQUS with a user-defined UMAT subroutine. A series of burst tests on TCPs with different numbers of reinforced layers were carried out, and experimental results were in good agreement with the corresponding numerical predictions. In addition, based on the adaptive progressive damage model, a parametric study into winding angles of TCPs with eight reinforced layers is conducted to evaluate their burst performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. URL: https://airborneoilandgas.com/home (reference date 18 August 2018).

  2. M. Xia, H. Takayanagi, and K. Kemmochi, “Analysis of multi-layered filament-wound composite pipes under internal pressure,” Compos. Struct., 53, No. 4, 483-491 (2001).

    Article  Google Scholar 

  3. M. Xia, K. Kemmochi, and H. Takayanagi, “Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading,” Compos. Struct., 51, No. 3, 273-283 (2001).

    Article  Google Scholar 

  4. H. Bakaiyan, H. Hosseini, and E. Ameri, “Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations,” Compos. Struct., 88, No. 4, 532-541 (2008).

    Article  Google Scholar 

  5. R. Ansari, F. Alisafaei, and P. Ghaedi, “Dynamic analysis of multi-layered filament-wound composite pipes subjected to cyclic internal pressure and cyclic temperature,” Compos. Struct., 92, No. 5, 1100-1109 (2010).

    Article  Google Scholar 

  6. Y. Bai, F. Xu, P. Cheng, M. F. Badaruddin, and M. Ashri, “Burst capacity of reinforced thermoplastic pipe (RTP) under isnternal pressure,” In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, 4, 281-288 (2011).

    Google Scholar 

  7. A. Onder, O. Sayman, T. Dogan, and N. Tarakcioglu, “Burst failure load of composite pressure vessels,” Compos. Struct., 89, No. 1, 159-166 (2009).

    Article  Google Scholar 

  8. G. Meijer and F. A. Ellyin, “Failure envelope for ±60 filament wound glass fibre reinforced epoxy tubulars,” Compos. Pt. A-Appl. Sci. Manuf., 39, No. 3, 555-564 (2008).

    Article  Google Scholar 

  9. P. Mertiny, F. Ellyin, and A. Hothan, “An experimental investigation on the effect of multi-angle filament winding on the strength of tubular composite structures,” Compos. Sci. Technol., 64, No. 1, 1-9 (2004).

    Article  Google Scholar 

  10. L. A. L. Martins, F. L. Bastian, and T. A. Netto, “Structural and functional failure pressure of filament wound composite tubes,” Mater. Des., 36, 779-787 (2012).

    Article  CAS  Google Scholar 

  11. L. A. L. Martins, F. L. Bastian, and T. A. Netto, “The effect of stress ratio on the fracture morphology of filament wound composite tubes,” Mater. Des., 49, 471-484 (2013).

    Article  CAS  Google Scholar 

  12. R. Rafiee and A. Amini, “Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes,” Comput. Mater. Sci., 96, 579-588 (2015).

    Article  CAS  Google Scholar 

  13. ASTM D1599-1999, Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings, USA (2005).

    Google Scholar 

  14. K. L. Edwards, “An overview of the technology of fibre-reinforced plastics for design purposes,” Mater. Des., 19, No. 1-2, 1-10 (1998).

    Article  CAS  Google Scholar 

  15. DNVGL-RP-F119, Thermoplastic composite pipes, (2017).

  16. P. Linde, J. Pleitner, H. D. Boer, and C. Carmone, “Modelling and simulation of fibre metal laminates,” In ABAQUS Users’ conference, (2004).

    Google Scholar 

  17. Y. Kim, J.F. Davalos, and E.J. Barbero, “Progressive failure analysis of laminated composite beams,” J. Compos Mater., 30, No. 5, 536-560 (1996).

    Article  CAS  Google Scholar 

  18. ABAQUS, Analysis user’s manual, Version 6.14, (2014).

  19. M. J. Clarke and G. J. Hancock, “A study of incremental-iterative strategies for non-linear analyses,” Int. J. Numer. Methods Eng., 29, 1365–1391 (1990).

    Article  Google Scholar 

  20. M. W. K. Rosenow, “Wind angle effects in glass fibre-reinforced polyester filament wound pipes,” Composites, 15, No. 2, 144-152 (1984).

  21. M. A. Ashraf, E. V. Morozov, and K. Shankar, “Flexure analysis of spoolable reinforced thermoplastic pipes for offshore oil and gas applications,” J. Reinf. Plast. Compos., 33, No. 6, 533-542 (2014).

    Article  CAS  Google Scholar 

  22. R. Rafiee, M. Fakoor, Hesamsadat, and Hadi, “The influence of production inconsistencies on the functional failure of grp pipes.” Steel & Composite Structures an International Journal (2015).

  23. R. Rafiee, F. Reshadi, and S. Eidi, “Stochastic analysis of functional failure pressures in glass fiber reinforced polyester pipes,” Mater. Des., 67, 422-427 (2015).

    Article  CAS  Google Scholar 

  24. R. Rafiee and M. A. Torabi, “Stochastic prediction of burst pressure in composite pressure vessels,” Compos. Struct., 185, 573-583 (2018).

    Article  Google Scholar 

  25. R. Rafiee, M. A. Torabi, and S. Maleki, “Investigating structural failure of a filament-wound composite tube subjected to internal pressure: Experimental and theoretical evaluation,” Polym. Test., 67, 322-330 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Wang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 2, pp. 299-318, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Wang, S., Meng, X. et al. Numerical and Experimental Investigation of the Burst Resistance of Glass-Fiber Thermoplastic Composite Pipes under Internal Pressure. Mech Compos Mater 57, 211–224 (2021). https://doi.org/10.1007/s11029-021-09946-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09946-1

Keywords

Navigation