Skip to main content
Log in

A continuous kernel functions method for mixed-type functional differential equations

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

The goal of the paper is to propose a continuous technique for dealing with first-order linear mixed-type functional differential equations. The approach is established via the employment of the reproducing kernel functions and their nice property. The error results of the tests demonstrate that this approach can give good continuous approximations to the considerable problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rustichini, A.: Functional differential equations of mixed type: the linear autonomous case. J. Dyn. Differ. Equ. 1(2), 121–143 (1989)

    Article  MathSciNet  Google Scholar 

  2. Rustichini, A.: Hopf bifurcation of functional differential equations of mixed type. J. Dyn. Differ. Equ. 1(2), 145–177 (1989)

    Article  MathSciNet  Google Scholar 

  3. Iakovleva, V., Vanegas, C.: On the solutions of differential equations with delayed and advanced arguments. Electron. J. Differ. Equ. Conf. 13, 57–63 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Myshkis, A.: Stability of linear mixed functional–differential equations with commensurable deviations of the space argument. Differ. Equ. 38, 1415–1422 (2002)

    Article  MathSciNet  Google Scholar 

  5. Ford, N.J., Lumb, P.M.: Mixed-type functional differental equations: a numerical approach. J. Comput. Appl. Math. 229, 471–479 (2009)

    Article  MathSciNet  Google Scholar 

  6. Lima, P., Teodoro, M., Ford, N., Lumb, P.: Analytical and numerical investigation of mixed-type functional differential equations. J. Comput. Appl. Math. 234(9), 2826–2837 (2010)

    Article  MathSciNet  Google Scholar 

  7. Lima, P., Teodoro, M., Ford, N., Lumb, P.: Finite element solution of a linear mixed-type functional differential equation. Numer. Algorithms 55(2–3), 301–320 (2010)

    Article  MathSciNet  Google Scholar 

  8. Teodoro, F., Lima, P., Ford, N., Lumb, P.: New approach to the numerical solution of forward–backward equations. Front. Math. 4(1), 155–168 (2009)

    Article  MathSciNet  Google Scholar 

  9. Ford, N., Lumb, P., Lima, P., Teodoro, M.: The numerical solution of forward–backward differential equations: decomposition and related issues. J. Comput. Appl. Math. 234(9), 2745–2756 (2010)

    Article  MathSciNet  Google Scholar 

  10. Silva, C., Escalante, R.: Segmented Tau approximation for a forward–backward functional differential equation. Comput. Math. Appl. 62, 4582–4591 (2011)

    Article  MathSciNet  Google Scholar 

  11. Cui, M.G., Lin, Y.Z.: Nonlinear Numerical Analysis in Reproducing Kernel Space. Nova Science Pub Inc, Hauppauge (2009)

    MATH  Google Scholar 

  12. Li, X.Y., Wu, B.Y.: A new kernel functions based approach for solving 1-D interface problems. Appl. Math. Comput. 380, 125276 (2020)

    Article  MathSciNet  Google Scholar 

  13. Li, X.Y., Wu, B.Y.: A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. J. Comput. Appl. Math. 311, 387–393 (2017)

    Article  MathSciNet  Google Scholar 

  14. Li, X.Y., Wu, B.Y.: Error estimation for the reproducing kernel method to solve linear boundary value problems. J. Comput. Appl. Math. 243, 10–15 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, X.Y., Wu, B.Y.: A numerical technique for variable fractional functional boundary value problems. Appl. Math. Lett. 43, 108–113 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ketabchi, R., Mokhtari, R., Babolian, E.: Some error estimates for solving Volterra integral equations by using the reproducing kernel method. J. Comput. Appl. Math. 273, 245–250 (2015)

    Article  MathSciNet  Google Scholar 

  17. Isfahani, F.T., Mokhtari, R., Loghmani, G.B., Mohammadi, M.: Numerical solution of some initial optimal control problems using the reproducing kernel Hilbert space technique. Int. J. Control 93, 1345–1352 (2020)

    Article  MathSciNet  Google Scholar 

  18. Isfahani, F.T., Mokhtari, R.: A numerical approach based on the reproducing kernel Hilbert space for solving a class of boundary value optimal control problems. Iran. J. Sci. Technol. A 42, 2309–2318 (2018)

    Article  MathSciNet  Google Scholar 

  19. Geng, F.Z., Wu, X.Y.: Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral. Appl. Math. Comput. 397, 125980 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Geng, F.Z.: Numerical methods for solving Schröinger equations in complex reproducing kernel Hilbert spaces. Math. Sci. 14, 293–299 (2020)

    Article  MathSciNet  Google Scholar 

  21. Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)

    Article  MathSciNet  Google Scholar 

  22. Geng, F.Z.: Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems. AIMS Math. 5, 6020–6029 (2020)

    Article  MathSciNet  Google Scholar 

  23. Niu, J., Xu, M.Q., Yao, G.M.: An efficient reproducing kernel method for solving the Allen–Cahn equation. Appl. Math. Lett. 89, 78–84 (2019)

    Article  MathSciNet  Google Scholar 

  24. Jiang, W., Li, H.: Multi-scale orthogonal basis method for nonlinear fractional equations with fractional integral boundary value conditions. Appl. Math. Comput. 378, 125151 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, Y.Q., Lin, Y.Z., Shen, Y.: A new multiscale algorithm for solving second order boundary value problems. Appl. Numer. Math. 156, 528–541 (2020)

    Article  MathSciNet  Google Scholar 

  26. Abu Arqub, O., Maayah, B.: Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-fractional Volterra integro-differential equations. Chaos Solitons Fract. 126, 394–402 (2019)

    Article  MathSciNet  Google Scholar 

  27. Abu Arqub, O., Maayah, B.: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense. Chaos Solitons Fract. 25, 163–170 (2019)

    Article  MathSciNet  Google Scholar 

  28. Bakhtiari, P., Abbasbandy, S., Van Gorder, R.A.: Solving the Dym initial value problem in reproducing kernel space. Numer. Algorithms 78, 405–421 (2018)

    Article  MathSciNet  Google Scholar 

  29. Sahihi, H., Allahviranloo, T., Abbasbandy, S.: Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space. Appl. Numer. Math. 151, 27–39 (2020)

    Article  MathSciNet  Google Scholar 

  30. Sahihi, H., Abbasbandy, S., Allahviranloo, T.: Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a dela. Appl. Math. Comput. 361, 583–598 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Allahviranloo, T., Sahihi, H.: Reproducing kernel method to solve parabolic partial differential equations with nonlocal conditions. Numer. Methods Partial Differ. Equ. 36, 1758–1772 (2020)

    Article  MathSciNet  Google Scholar 

  32. Akgül, A.: Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid. J. Taibah Univ. Sci. 13, 858–863 (2019)

    Article  Google Scholar 

  33. Akgül, A., Ahmad, H.: Reproducing kernel method for Fangzhu’s oscillator for water collection from air. Math. Method Appl. Sci. (2021). https://doi.org/10.1002/mma.6853

    Article  Google Scholar 

  34. Akgül, A.: A new application of the reproducing kernel method. Discrete Cont. Dyn. Syst. J. (2020). https://doi.org/10.3934/dcdss.2020261

    Article  MATH  Google Scholar 

  35. Akgül, A., Grow, D.: Existence of unique solutions to the Telegraph equation in binary reproducing kernel Hilbert spaces. Differ. Equ. Dyn. Syst. 28, 715–744 (2020)

    Article  MathSciNet  Google Scholar 

  36. Akgül, A., Inc, M., Hashemi, M.S.: Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices. Nonlinear Dyn. 88, 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  37. Inc, M., Akgül, A., Geng, F.: Reproducing kernel Hilbert space method for solving Bratu’s problem. Bull. Malays. Math. Sci. Soc. 38, 271–287 (2015)

    Article  MathSciNet  Google Scholar 

  38. Akgül, E.K., Akgül, A., Khan, Y.: Representation for the reproducing kernel Hilbert space method for a nonlinear system. Hacet. J. Math. Stat. 48, 1345–1355 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Akgül, A., Inc, M., Karatas, E.: Reproducing kernel functions for difference equations. Discrete Cont. Dyn. Syst. J. 18, 1055–1064 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Raza, A., Khan, A.: Haar wavelet series solution for solving neutral delay differential equations. J. King Saud Univ. Sci. 31, 1070–1076 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11801044, 11326237).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Y. Li or B. Y. Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Li, X.Y. & Wu, B.Y. A continuous kernel functions method for mixed-type functional differential equations. Math Sci 16, 177–182 (2022). https://doi.org/10.1007/s40096-021-00409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00409-1

Keywords

Navigation