Skip to main content
Log in

Impact of Atmosphere on Recovered Carbon Fibers From Poly Ether Ether Ketone (PEEK) Based Composites During Thermoconversion

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Carbon Fibers Reinforced Polymer composites (CFRP) are high added value materials used in many manufactured products. Especially in aeronautics, thermosetting resins tend to be replaced by heat-resistant thermoplastic polymers. The aim of the work is to evaluate suitable operating conditions of thermoconversion for the recovery of carbon fibers from Poly Ether Ether Ketone (PEEK)/carbon fibers composites. Micro and pilot scale tests have been performed in nitrogen, wet nitrogen, air, and wet air. Thermogravimetric analysis of PEEK/carbon fiber composites showed a moderate decomposition onset temperature of the composite at 515 °C and 510 °C in dry nitrogen and dry air respectively. The oxidative atmosphere did not significantly impact this temperature since the first mass loss was not atmosphere dependent. However, after the first PEEK degradation reaction, the nature of the atmosphere appeared as a great issue. Total mass loss was significantly improved with temperature (full oxidation of polymer and carbon fibers up to 800 °C) and with reaction time using air. Indeed, at pilot scale, the matrix was fully degraded in air atmosphere at 550 °C for 1 h while only 42% and 46% was reached in nitrogen and steam/nitrogen respectively. Comparison of thermogravimetric data between wet and dry atmospheres revealed that steam plays a thermal retardant role leading to some differences on the matrix degradation and on the surface morphology of the carbon fiber at pilot scale. Air treatments at pilot scale induced a reduction of fiber diameters (< − 3.7%) but the tensile strengths of recovered carbon fibers were preserved with an average retention of mechanical properties of 81%-85%. It has been concluded that recycling of PEEK/carbon composite required an oxidant to split up carbon fibers from the PEEK matrix.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mallick, P.K.: Fiber-reinforced composites materials, manufacturing, and design. CRC, Boca Raton (2008)

    Google Scholar 

  2. Koumoulos, E.P., et al.: Research and development in carbon fibers and advanced high-performance composites supply chain in europe: a roadmap for challenges and the industrial uptake. J. Compos. Sci. 3(3), 86 (2019). https://doi.org/10.3390/jcs3030086

    Article  Google Scholar 

  3. Holmes, M.: Global carbon fibre market remains on upward trend. Reinf. Plast. 58(6), 38–45 (2014). https://doi.org/10.1016/S0034-3617(14)70251-6

    Article  Google Scholar 

  4. Post, W., Susa, A., Blaauw, R., Molenveld, K., Knoop, R.J.I.: A Review on the potential and limitations of recyclable thermosets for structural applications. Polym. Rev. 60(2), 359–388 (2020). https://doi.org/10.1080/15583724.2019.1673406

    Article  Google Scholar 

  5. Sudhin, A., Remanan, M., Ajeesh, G., Jayanarayanan, K.: Comparison of properties of carbon fiber reinforced thermoplastic and thermosetting composites for aerospace applications. Materials Today: Proceedings 24, 453–462 (2020). https://doi.org/10.1016/j.matpr.2020.04.297

    Article  Google Scholar 

  6. Muzzy, J.D., Kays, A.O.: Thermoplastic vs. thermosetting structural composites. Polym. Compos. 5(3), 169–172 (1984). https://doi.org/10.1002/pc.750050302

    Article  Google Scholar 

  7. Vieille, B., Albouy, W., Chevalier, L., Taleb, L.: About the influence of stamping on thermoplastic-based composites for aeronautical applications. Compos. B Eng. 45(1), 821–834 (2013). https://doi.org/10.1016/j.compositesb.2012.07.047

    Article  Google Scholar 

  8. Biron, M.: Thermoplastics and thermoplastic composites: technical information for plastics users. Elsevier, BH, Amsterdam (2006)

    Google Scholar 

  9. Naqvi, S.R., Prabhakara, H.M., Bramer, E.A., Dierkes, W., Akkerman, R., Brem, G.: A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 136, 118–129 (2018). https://doi.org/10.1016/j.resconrec.2018.04.013

    Article  Google Scholar 

  10. Giorgini, L., Benelli, T., Brancolini, G., Mazzocchetti, L.: Recycling of carbon fiber reinforced composite waste to close their life cycle in a cradle-to-cradle approach. Current Opinion in Green and Sustainable Chemistry 26, 100368 (2020). https://doi.org/10.1016/j.cogsc.2020.100368

    Article  Google Scholar 

  11. Hagnell, M.K., Åkermo, M.: The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials. J. Clean. Prod. 223, 957–968 (2019). https://doi.org/10.1016/j.jclepro.2019.03.156

    Article  Google Scholar 

  12. Zhang, J., Chevali, V.S., Wang, H., Wang, C.-H.: Current status of carbon fibre and carbon fibre composites recycling. Compos. B Eng. 193, 108053 (2020). https://doi.org/10.1016/j.compositesb.2020.108053

    Article  Google Scholar 

  13. Meng, F., McKechnie, J., Pickering, S.J.: An assessment of financial viability of recycled carbon fibre in automotive applications. Compos. A Appl. Sci. Manuf. 109, 207–220 (2018). https://doi.org/10.1016/j.compositesa.2018.03.011

    Article  Google Scholar 

  14. G. Oliveux, L. O. Dandy, and G. A. Leeke, “Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties,” Progress in Materials Science, p. 39, 2015.

  15. A. Fernández, C. S. Lopes, C. González, and F. A. López, “Characterization of Carbon Fibers Recovered by Pyrolysis of Cured Prepregs and Their Reuse in New Composites,” in Recent Developments in the Field of Carbon Fibers, R. Khanna and R. Cayumil, Eds. InTech, 2018.

  16. Meyer, L.O., Schulte, K., Grove-Nielsen, E.: CFRP-recycling following a pyrolysis route: process optimization and potentials. J. Compos. Mater. 43(9), 1121–1132 (2009). https://doi.org/10.1177/0021998308097737

    Article  Google Scholar 

  17. Jiang, G., Pickering, S.J.: Structure–property relationship of recycled carbon fibres revealed by pyrolysis recycling process. J Mater Sci 51(4), 1949–1958 (2016). https://doi.org/10.1007/s10853-015-9502-2

    Article  Google Scholar 

  18. Ye, S.Y., Bounaceur, A., Soudais, Y., Barna, R.: Parameter optimization of the steam thermolysis: a process to recover carbon fibers from polymer-matrix composites. Waste Biomass Valor 4(1), 73–86 (2013). https://doi.org/10.1007/s12649-013-9220-4

    Article  Google Scholar 

  19. S. Y. Ye, “Valorisation de déchets composites à matrices polymériques renforcées de fibres de carbone par un procédé de vapo-thermolyse,” PhD Thesis, Institut National Polytechnique de Toulouse, 2012.

  20. A. Oliveira Nunes, “Composites renforcés à fibres de carbone : récupération des fibres par vapo-thermolyse, optimisation du procédé,” PhD Thesis, Ecole des Mines d’Albi-Carmaux, 2015.

  21. Buggy, M., Farragher, L., Madden, W.: Recycling of composite materials. J. Mater. Process. Technol. 55(3–4), 448–456 (1995). https://doi.org/10.1016/0924-0136(95)02037-3

    Article  Google Scholar 

  22. Dandy, L.O., Oliveux, G., Wood, J., Jenkins, M.J., Leeke, G.A.: Accelerated degradation of Polyetheretherketone (PEEK) composite materials for recycling applications. Polym. Degrad. Stab. 112, 52–62 (2015). https://doi.org/10.1016/j.polymdegradstab.2014.12.012

    Article  Google Scholar 

  23. Ramakrishna, S., Tan, W.K., Teoh, S.H., Lai, M.O.: Recycling of Carbon Fiber/Peek Composites. KEM 137, 1–8 (1997)

    Article  Google Scholar 

  24. M. Roux, C. Dransfeld, N. Eguémann, and L. Giger, “Processing and recycling of thermoplastic composite fibre/PEEK aerospace part,” presented at the 16th European Conference on Composite Materials, ECCM 2014, Jan. 2014.

  25. “EN 2564:2018 - Aerospace series - Carbon fibre laminates - Determination of the fibre, resin and void contents.” Accessed: Mar. 02, 2021. [Online]. Available: https://standards.iteh.ai/catalog/standards/cen/2f690182-64ff-47f0-bc85-e90b994165c7/en-2564-2018.

  26. M. Boulanghien, “Formulations de composites thermoplastiques à partir de fibres de carbone recyclées par vapo-thermolyse,” PhD Thesis, Ecole des Mines d’Albi-Carmaux, 2014.

  27. Yao, J., Yu, W., Pan, D.: Tensile strength and its variation of PAN-based carbon fibers. III. Weak-link analysis. J. Appl. Polym. Sci. 110(6), 3778–3784 (2008). https://doi.org/10.1002/app.24879

    Article  Google Scholar 

  28. F. Islam, S. Joannès, L. Laiarinandrasana, and A. Bunsell, “Adaptation of Weibull analysis to represent strength behaviour of brittle fibres,” Aug. 2019.

  29. Yu, W., Yao, J.: Tensile strength and its variation of PAN-based carbon fibers. I. Statistical distribution and volume dependence. Journal of Applied Polymer Science - J APPL POLYM SCI 101, 3175–3182 (2006). https://doi.org/10.1002/app.23399

    Article  Google Scholar 

  30. Harikrishnan, R., Mohite, P.M., Upadhyay, C.S.: Generalized Weibull model-based statistical tensile strength of carbon fibres. Arch Appl Mech 88(9), 1617–1636 (2018). https://doi.org/10.1007/s00419-018-1391-9

    Article  Google Scholar 

  31. Kiran, N., Ekinci, E., Snape, C.E.: Recyling of plastic wastes via pyrolysis. Resour. Conserv. Recycl. 29(4), 273–283 (2000). https://doi.org/10.1016/S0921-3449(00)00052-5

    Article  Google Scholar 

  32. S. V. Levchik, E. D. Weil, and M. Lewin, “Thermal decomposition of aliphatic nylons,” Polymer International, vol. 48, no. 7, pp. 532–557, Jul. 1999, Accessed: Mar. 02, 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/%28SICI%291097-0126%28199907%2948%3A7%3C532%3A%3AAID-PI214%3E3.0.CO%3B2-R.

  33. Hay, J.N., Kemmish, D.J.: Thermal decomposition of poly(aryl ether ketones). Polymer 28(12), 2047–2051 (1987). https://doi.org/10.1016/0032-3861(87)90039-5

    Article  Google Scholar 

  34. Patel, P., Hull, T.R., McCabe, R.W., Flath, D., Grasmeder, J., Percy, M.: Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polym. Degrad. Stab. 95(5), 709–718 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.01.024

    Article  Google Scholar 

  35. Wang, S., Chen, Z.-H., Ma, W.-J., Ma, Q.-S.: Influence of heat treatment on physical–chemical properties of PAN-based carbon fiber. Ceram. Int. 32(3), 291–295 (2006). https://doi.org/10.1016/j.ceramint.2005.02.014

    Article  Google Scholar 

  36. Patel, P., et al.: Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites. Polym. Degrad. Stab. 96(1), 12–22 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.11.009

    Article  Google Scholar 

  37. Kenny, J.M., Torre, L.: Degradation Kinetics of High-Performance Polymers and Their Composites. High-Temperature Properties and Applications of Polymeric Materials 603, 140–154 (1995)

    Article  Google Scholar 

  38. Yao, F., Zheng, J., Qi, M., Wang, W., Qi, Z.: The thermal decomposition kinetics of poly(ether-ether-ketone) (PEEK) and its carbon fiber composite. Thermochim. Acta 183, 91–97 (1991). https://doi.org/10.1016/0040-6031(91)80448-R

    Article  Google Scholar 

  39. Hamciuc, C., Lisa, G., Hamciuc, E., Epure, E.-L., Tudorachi, N.: Thermal behavior study and degradation mechanism by TG/MS/FTIR technique of some poly(aryl ether ether ketone)s. J. Anal. Appl. Pyrol. 150, 104877 (2020). https://doi.org/10.1016/j.jaap.2020.104877

    Article  Google Scholar 

Download references

Acknowledgement

Financial support by IMT Mines Albi, ADEME (Agence de l’environnement et de la maîtrise de l’énergie) and FAPESP (Processo:16/19896-2 Linha de fomento: Auxílio à Pesquisa Regular). RAPSODEE laboratory for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fontaine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontaine, P., Weiss-Hortala, E., Botaro, V. et al. Impact of Atmosphere on Recovered Carbon Fibers From Poly Ether Ether Ketone (PEEK) Based Composites During Thermoconversion. Waste Biomass Valor 12, 6389–6402 (2021). https://doi.org/10.1007/s12649-021-01445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01445-7

Keywords

Navigation