Skip to main content
Log in

Sour Cherry Kernel as an Unexploited Processing Waste: Optimisation of Extraction Conditions for Protein Recovery, Functional Properties and In Vitro Digestibility

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Kernel of sour cherry (Prunus cerasus L.) is a valuable source of protein generated as byproduct during processing of sour cherries. In this study, optimisation of protein extraction yield from sour cherry kernel was investigated using response surface methodology. Optimum conditions for alkaline solubilisation/isoelectric precipitation extraction were identified as pH 8.5, 1:10 solid-to-solvent ratio, and 1 h extraction time to obtain a protein yield of 63.8% for a protein content of 88.3%. The isoelectric precipitation point of sour cherry kernel protein isolate (SCKPI) was shown to be 4.2 and a high solubility of 85.3% was found at neutral pH. Results showed that SCKPI had a substantially high in vitro protein digestibility (95.7%). Other physicochemical properties such as water- and oil-holding capacities, gelling capacity, emulsion stability, foaming capacity as well as thermal properties were also reported and ensured comparable functionalities indicating a great potential as a valuable plant-based protein source for the food industry.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAOSTAT [Internet]. Annual Production of Crops. 2018 [cited 2020 Jun 21]. Available from: http://www.fao.org/faostat/en/#data/QC

  2. McLellan, M.R., Padilla-Zakour, O.I.: Sweet Cherry and Sour Cherry Processing. In: Barrett DM, Somogyi L, Ramaswamy HS, editors. Processing Fruits: Science and Technology [Internet]. 2nd ed. CRC Press; [cited 2020 Jun 23]. p. 497 (2004)

  3. Yılmaz, F.M., Görgüç, A., Karaaslan, M., Vardin, H., ErsusBilek, S., Uygun, Ö., et al.: Sour cherry by-products: compositions, functional properties and recovery potentials—a review. Crit. Rev. Food Sci. Nutri. 59(22), 3549–3563 (2019)

    Article  Google Scholar 

  4. Damar, I., Ekşi, A.: Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chem. 135(4), 2910–2914 (2012)

    Article  Google Scholar 

  5. Górnaś, P., Rudzińska, M., Raczyk, M., Mišina, I., Soliven, A., Segliņa, D.: Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications. Ind. Crops Prod. 82, 44–50 (2016)

    Article  Google Scholar 

  6. Bak, I., Lekli, I., Juhasz, B., Varga, E., Varga, B., Gesztelyi, R., et al.: Isolation and analysis of bioactive constituents of Sour Cherry (Prunus cerasus ) seed Kernel: an emerging functional food. J Med Food 13(4), 905–910 (2010)

    Article  Google Scholar 

  7. Csiki, Z., Papp-Bata, A., Czompa, A., Nagy, A., Bak, I., Lekli, I., et al.: Orally delivered sour cherry seed extract (SCSE) affects cardiovascular and hematological parameters in humans. Phyther. Res. 29(3), 444–449 (2015)

    Article  Google Scholar 

  8. Bak, I., Czompa, A., Csepanyi, E., Juhasz, B., Kalantari, H., Najm, K., et al.: Evaluation of systemic and dermal toxicity and dermal photoprotection by sour Cherry Kernels. Phyther. Res. 25(11), 1714–1720 (2011)

    Article  Google Scholar 

  9. Mahmoud, F., Haines, D., Al-Awadhi, R., Dashti, A.A., Al-Awadhi, A., Ibrahim, B., et al.: Sour cherry (Prunus cerasus) seed extract increases heme oxygenase-1 expression and decreases proinflammatory signaling in peripheral blood human leukocytes from rheumatoid arthritis patients. Int. Immunopharmacol. 20(1), 188–196 (2010)

    Article  Google Scholar 

  10. Yilmaz, C., Gökmen, V.: Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind. Crops Prod. 1(49), 130–135 (2013)

    Article  Google Scholar 

  11. Popa, V.-M., Misca, C., Bordean, D., Raba, D.-N., Stef, D., Dumbrava, D.: Characterization of sour cherries (Prunus cerasus) kernel oil cultivars from Banat. J. Agroaliment Process. Technol. 17(4), 398–401 (2011)

    Google Scholar 

  12. Özcan, M.M., Ünver, A., Arslan, D.: A research on evaluation of some fruit kernels and/or seeds as a raw material of vegetable oil industry. Qual. Assur. Saf. Crop Foods 7(2), 187–191 (2015)

    Article  Google Scholar 

  13. Chandra, A., Nair, M.G.: Characterization of pit oil from montmorency cherry (Prunus cerasus L.). J. Agric. Food Chem. 41, 879–881 (1993)

    Article  Google Scholar 

  14. Khalid, E.K., Babiker, E.E., EL Tiny, A.H.: Solubility and functional properties of sesame seed proteins as influenced by pH and/or salt concentration. Food Chem. 82(3), 361–366 (2003)

    Article  Google Scholar 

  15. Karaca, A.C., Low, N., Nickerson, M.: Emulsifying properties of canola and flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food Res. Int. 44(9), 2991–2998 (2011)

    Article  Google Scholar 

  16. Oreopoulou, V., Tzia, C.: Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants. In: Oreopoulou, V., Russ, W. (eds.) Utilization of By-Products and Treatment of Waste in the Food Industry, pp. 209–232. Springer, Boston (2007)

    Chapter  Google Scholar 

  17. Tuna HE. :Utilization Of Cherry Kernel, Pomegrante Seed, Pumpkin Seed And Apricot Kernel Flours For Cake Production [Internet]. Fen Bilimleri Enstitüsü; [cited 2020 Jun 23]. (2015)

  18. Mune Mune, M.A., Minka, S.R., Mbome, I.L.: Response surface methodology for optimisation of protein concentratepreparation from cowpea [Vigna unguiculata (L.) Walp]. Food Chem. 110(3), 735–41 (2018)

    Article  Google Scholar 

  19. Çelik, M., Güzel, M., Yildirim, M.: Effect of pH on protein extraction from sour cherry kernels and functional properties of resulting protein concentrate. J. Food Sci. Technol. 56(6), 3023–3032 (2019)

    Article  Google Scholar 

  20. Horax, R., Hettiarachchy, N., Kannan, A., Chen, P.: Protein extraction optimisation, characterisation, and functionalities of protein isolate from bitter melon (Momordica charantia) seed. Food Chem. 124(2), 545–550 (2011)

    Article  Google Scholar 

  21. AACC: Approved Methods of the American Association of Cereal Chemists, 18th edn. AACC, St. Paul (1986)

    Google Scholar 

  22. Stone, A.K., Karalash, A., Tyler, R.T., Warkentin, T.D., Nickerson, M.T.: Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res Int. 76(P1), 31–38 (2015)

    Article  Google Scholar 

  23. Jarpa-Parra, M., Bamdad, F., Wang, Y., Tian, Z., Temelli, F., Han, J., et al.: Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality. LWT Food Sci Technol. 57(2), 461–469 (2014)

    Article  Google Scholar 

  24. Tan, E.S., Ying-Yuan, N., Gan, C.Y.: A comparative study of physicochemical characteristics and functionalities of pinto bean protein isolate (PBPI) against the soybean protein isolate (SPI) after the extraction optimisation. Food Chem. 152, 447–455 (2014)

    Article  Google Scholar 

  25. Turan, D., Altay, F., Çapanoǧlu, G.E.: The influence of thermal processing on emulsion properties of defatted hazelnut flour. Food Chem. 167(15), 100–106 (2015)

    Article  Google Scholar 

  26. Chee, K.L., Ling, H.K., Ayob, M.K.: Optimization of trypsin-assisted extraction, physico-chemical characterization, nutritional qualities and functionalities of palm kernel cake protein. LWT Food Sci. Technol. 46(2), 419–427 (2012)

    Article  Google Scholar 

  27. Sridaran, A., Karim, A.A., Bhat, R.: Pithecellobium jiringa legume flour for potential food applications: studies on their physico-chemical and functional properties. Food Chem. 130(3), 528–535 (2012)

    Article  Google Scholar 

  28. Yuliana, M., Truong, C.T., Huynh, L.H., Ho, Q.P., Ju, Y.H.: Isolation and characterization of protein isolated from defatted cashew nut shell: Influence of pH and NaCl on solubility and functional properties. LWT Food Sci. Technol. 55(2), 621–626 (2014)

    Article  Google Scholar 

  29. Świeca, M., Baraniak, B., Gawlik-Dziki, U.: In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques. Food Chem. 138(2–3), 1414–1420 (2013)

    Article  Google Scholar 

  30. Ma, C.Y., Harwalkar, V.R.: Thermal analysis of food proteins. Adv. Food Nutr. Res. 35(C), 317–66 (1991)

    Article  Google Scholar 

  31. Correia, P., Beirão-Da-Costa, M.L.: Effect of drying temperatures on starch-related functional and thermal properties of chestnut flours. Food Bioprod Process. 90(2), 284–294 (2012)

    Article  Google Scholar 

  32. Acevedo, B.A., Avanza, M.V., Cháves, M.G., Ronda, F.: Gelation, thermal and pasting properties of pigeon pea (Cajanus cajan L.), dolichos bean (Dolichos lablab L.) and jack bean (Canavalia ensiformis) flours. J Food Eng. 119(1), 65–71 (2013)

    Article  Google Scholar 

  33. Boye, J.I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., et al.: Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res Int. 43(2), 537–546 (2010)

    Article  Google Scholar 

  34. Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., et al.: Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocoll. 76, 131–140 (2018)

    Article  Google Scholar 

  35. Yücetepe, A., Saroğlu, Ö., Özçelik, B.: Response surface optimization of ultrasound-assisted protein extraction from Spirulina platensis: investigation of the effect of extraction conditions on techno-functional properties of protein concentrates. J Food Sci Technol. 56(7), 3282–3292 (2019)

    Article  Google Scholar 

  36. Siow, H.L., Gan, C.Y.: Functional protein from cumin seed (Cuminum cyminum): optimization and characterization studies. Food Hydrocoll. 41, 178–187 (2014)

    Article  Google Scholar 

  37. Eromosele, C.O., Arogundade, L.A., Eromosele, I.C., Ademuyiwa, O.: Extractability of African yam bean (Sphenostylis stenocarpa) protein in acid, salt and alkaline aqueous media. Food Hydrocoll. 22(8), 1622–1628 (2018)

    Article  Google Scholar 

  38. Sharma, P.C., Tilakratne, B.M.K.S., Gupta, A.: Utilization of wild apricot kernel press cake for extraction of protein isolate. J. Food Sci. Technol. 47(6), 682–685 (2019)

    Article  Google Scholar 

  39. Ozdal, T., Capanoglu, E., Altay, F.: A review on protein-phenolic interactions and associated changes. Vol. 15, Food International, vol. 51, pp. 954–70. Elsevier, Amsterdam (2019)

    Google Scholar 

  40. Damodaran, S.: Food proteins: an overview. In: Damodaran, S., Paraf, A. (eds.) Food Proteins and Their Applications, pp. 1–24. CRC Press, Boca Raton (1997)

    Google Scholar 

  41. George, R.M.: Freezing proceseses used in the food industry. Trends Food Sci. Technol. 4(5), 134–138 (1997)

    Article  Google Scholar 

  42. Fernández-Quintela, A., Macarulla, M.T., Del Barrio, A.S., Martínez, J.A.: Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods Hum. Nutr. 51(4), 331–341 (1997)

    Article  Google Scholar 

  43. Maltais, A., Remondetto, G.E., Subirade, M.: Mechanisms involved in the formation and structure of soya protein cold-set gels: a molecular and supramolecular investigation. Food Hydrocoll. 22(4), 550–559 (2018)

    Article  Google Scholar 

  44. Moure, A., Sineiro, J., Domínguez, H., Parajó, J.C.: Functionality of oilseed protein products: a review. Food Res Int. 39(9), 945–963 (2006)

    Article  Google Scholar 

  45. Zhao, H., Shen, C., Wu, Z., Zhang, Z., Xu, C.: Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. J Food Biochem. 44(4), e13157 (2020)

    Article  Google Scholar 

  46. Omowaye-Taiwo, O.A., Fagbemi, T.N., Ogunbusola, E.M., Badejo, A.A.: Effect of germination and fermentation on the proximate composition and functional properties of full-fat and defatted cucumeropsis mannii seed flours. J Food Sci Technol. 52(8), 5257–5263 (2020)

    Article  Google Scholar 

  47. Gilbert, J.A., Bendsen, N.T., Tremblay, A., Astrup, A.: Effect of proteins from different sources on body composition. Nutr Metab Cardiovasc Dis. 21(Suppl 2), B16-31 (2011)

    Article  Google Scholar 

  48. Damodaran S. :Structure-function relationship of food proteins. In: Hettiarachchy NS, Ziegler GR, editors. Protein Functionality in Food Systems. CRC Press. p. 1–37 (1994)

  49. El-Aal, M.H.A., Hamza, M.A., Rahma, E.H.: In vitro digestibility, physico-chemical and functional properties of apricot kernel proteins. Food Chem. 19(3), 197–211 (1986)

    Article  Google Scholar 

  50. Chen, N., Zhao, M., Sun, W.: Effect of protein oxidation on the in vitro digestibility of soy protein isolate. Food Chem. 141(3), 3224–3229 (2013)

    Article  MathSciNet  Google Scholar 

  51. Alonso, R., Aguirre, A., Marzo, F.: Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 68(2), 159–165 (2000)

    Article  Google Scholar 

  52. Li, Y., Zheng, Y., Zhang, Y., Xu, J., Gao, G.: Antioxidant activity of coconut (Cocos nucifera L.) protein fractions. Molecules. 23(3), 707 (2018)

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the grant from İTÜ BAP Project No.39325 (Istanbul Technical University Scientific Research Projects Department).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beraat Özçelik.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasapoğlu, K.N., Demircan, E., Eryılmaz, H.S. et al. Sour Cherry Kernel as an Unexploited Processing Waste: Optimisation of Extraction Conditions for Protein Recovery, Functional Properties and In Vitro Digestibility. Waste Biomass Valor 12, 6685–6698 (2021). https://doi.org/10.1007/s12649-021-01417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01417-x

Keywords

Navigation