Skip to main content
Log in

Anisotropic stellar Finch-Skea structures satisfying Karmarkar condition in a teleparallel framework involving off-diagonal tetrad

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present paper is devoted to study the spherically symmetric compact star model with anisotropic matter distribution in the framework of f(T) modified gravity. In this work, we choose off-diagonal tetrad along with the power law modal of f(T), where T is the torsion scalar. For the sake of simplicity in calculations, we use Karmarkar condition and develop a significant differential equation providing the connection between two key elements \(e^a\) and \(e^b\) of the spacetime metric. Further, in order to determine the exact stellar solutions and values of involved constants, we take a well-known Finch-Skea structure into account as \(g_{rr}\) component and find the resulting form of \(g_{tt}\) component. In order to check the behavior of anisotropic fluid and to explore the stability of compact star, we use observed values of mass and radius for three compact stars: \(PSR J1614-2230\), \(Vela X-I\) and \(SAX J1808.4-3658\). From the graphical illustration of different physical features of this model, it is concluded that our constructed stellar structure is physically viable and interesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.G. Riess et al., Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. A. Einstein, S. B. Preuss: Akad. Wiss. 22, 414 (1925)

    Google Scholar 

  4. G. Hinshaw et al., Astrophys. J. Suppl. Ser. 208, 19 (2013)

    Article  ADS  Google Scholar 

  5. Y. Wang, Phys. Rev. D 78, 123532 (2008)

    Article  ADS  Google Scholar 

  6. S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (Springer, Dodrecht, 2011)

    Book  MATH  Google Scholar 

  7. S. Capozziello, M.D. Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 04, 115 (2007)

    Article  Google Scholar 

  9. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  10. K. Koyama, Rep. Prog. Phys. 79, 046902 (2016)

    Article  ADS  Google Scholar 

  11. T.P. Sotiriou, R. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  12. R. Aldrovandi, J.G. Pereira, Teleparallel Gravity: An Introduction (Springer, Dodrecht, 2012)

    MATH  Google Scholar 

  13. R. Durrer, R. Maartens, Dark Energy: Observational and Theoretical Approaches (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  14. A.D. Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  15. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011)

    Article  ADS  Google Scholar 

  16. L. Iorio, E.N. Saridakis, Mon. Not. R. Astron. Soc. 427, 1555 (2012)

    Article  ADS  Google Scholar 

  17. Y. Xie, X.M. Deng, Mon. Not. R. Astron. Soc. 433, 3584 (2013)

    Article  ADS  Google Scholar 

  18. J. Jeans, Mon. Not. R. Astron. Soc. 82, 122 (1922)

    Article  ADS  Google Scholar 

  19. R. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  20. R. Bowers, E. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  21. K. Dev, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002)

    Article  Google Scholar 

  22. K. Dev, M. Gleiser, Gen. Relativ. Gravit. 35, 1435 (2003)

    Article  ADS  Google Scholar 

  23. L. Herrera, J.P.D. Leon, J. Math. Phys. 26, 2302 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Sharma, B.S. Ratanpal, Int. J. Mod. Phys. D 22, 1350074 (2013)

    Article  ADS  Google Scholar 

  26. S.A. Ngubelanga, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 357, 74 (2015)

    Article  ADS  Google Scholar 

  27. M.H. Murad, S. Fatema, Eur. Phys. J. C 75, 533 (2015)

    Article  ADS  Google Scholar 

  28. M.H. Murad, S. Fatema, Eur. Phys. J. Plus 130, 3 (2015)

    Article  ADS  Google Scholar 

  29. K.R. Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)

    Article  Google Scholar 

  30. K. Komathiraj, S.D. Maharaj, Gen. Relativ. Gravit. 39, 2079 (2007)

    Article  ADS  Google Scholar 

  31. B.V. Ivanov, Gen. Relativ. Gravit. 44, 1835 (2012)

    Article  ADS  Google Scholar 

  32. B.V. Ivanov, Eur. Phy. J. C 78, 332 (2018)

    Article  ADS  Google Scholar 

  33. P. Bhar, M.H. Murad, Astrophys. Space Sci. 361, 334 (2016)

    Article  ADS  Google Scholar 

  34. M. Malaver, Front. Math. Its Appl. 1, 9 (2014)

    Google Scholar 

  35. L. Herrera, W. Barreto, Phys. Rev. D 88, 084022 (2013)

    Article  ADS  Google Scholar 

  36. D.M. Pandya et al., Astrophys. Space Sci. 365, 30 (2020)

    Article  ADS  Google Scholar 

  37. J. Ospino and L. A. Nen̈uz: Eur. Phys. J. C 80, 166 (2020)

  38. G. Abbas, S. Qaisar, W. Javed, W. Ibrahim, Canadian. J. Phys. 97, 374 (2019)

    ADS  Google Scholar 

  39. S. Gedela et al., Eur. Phys. J. A 55, 95 (2019)

    Article  ADS  Google Scholar 

  40. G. Mustafa et al., Eur. Phys. J. C 80, 26 (2020)

    Article  ADS  Google Scholar 

  41. S. Waheed et al., Symmetry 12, 962 (2020)

    Article  Google Scholar 

  42. R. Aldrovandi, J.G. Pereira, K.H. Vu, Braz. J. Phys. 34 (2004)

  43. H.I. Arcos, J.G. Pereira, Int. J. Mod. Phys. D 13, 2193 (2004)

    Article  ADS  Google Scholar 

  44. C.G. B\(\ddot{o}\)hmer, A. Mussa and N. Tamanini: Class. Quantum Grav. 28, 245020 (2011)

  45. N. Tamanini and C. G. B\(\ddot{o}\)hmer: Phys. Rev. D 86, 044009 (2012)

  46. M.L. Ruggiero, N. Radicella, Phys. Rev. D 91, 104014 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. A. DeBenedictis, S. Ilijic, Phys. Rev. D 94, 124025 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Bahamonde, K. Flathmann, C. Pfeifer, Phys. Rev. D 100, 084064 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Zubair, G. Abbas, Astrophys. Space Sci. 27, 361 (2016)

    Google Scholar 

  50. M.R. Setare, F. Darab, Gen. Relativ. Gravit. 44, 2521 (2012)

    Article  ADS  Google Scholar 

  51. G.G.L. Nashed, Phys. Rev. D 88, 104034 (2013)

    Article  ADS  Google Scholar 

  52. G.G.L. Nashed, Gen. Relativ. Gravit. 45, 1887 (2013)

    Article  ADS  Google Scholar 

  53. M. Hohmann, L. J\(\ddot{a}\)rv, M. Kr\(\breve{s}\breve{s}\acute{a}\)k and C. Pfeifer: Phys. Rev. D 100, 084002 (2019)

  54. M. Kr\(\breve{s}\breve{s}\acute{a}\)k et al.: Class. Quantum Grav. 36, 183001 (2019)

  55. G.G.L. Nashed, Eur. Phys. Lett. 105, 10001 (2014)

    Article  ADS  Google Scholar 

  56. G.G.L. Nashed, E.N. Saridakis, Class. Quantum Grav. 36, 135005 (2019)

    Article  ADS  Google Scholar 

  57. G.G.L. Nashed, A. Abebe, K. Bamba, (n.d.)

  58. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Phys. Lett. B 715, 241 (2012)

    Article  ADS  Google Scholar 

  59. L. P. Eisenhart.: Riemannian Geometry (Princeton Univ. Press, 1925)

  60. M.R. Finch, J.E.F. Skea, Class. Quantum Grav. 6, 467 (1989)

    Article  ADS  Google Scholar 

  61. S.K. Maurya et al., Phys. Rev. D 100, 044014 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  62. H. Abreu, H. Hernandez and L.A. Nun̈ez: Class. Quantum Grav. 24, 4631 (2007)

  63. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 24, 51 (1975)

    ADS  Google Scholar 

  64. K.N. Singh, S.K. Maurya, F. Rahaman, F. Tello-Ortiz, Eur. Phys. J. C 79, 381 (2019)

    Article  ADS  Google Scholar 

  65. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  66. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

    Article  ADS  Google Scholar 

  67. A. Chanda, S. Dey, B.C. Paul, Eur. Phys. J. C 79, 502 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

“M. Zubair thank the Higher Education Commission, Islamabad, Pakistan for its financial support under the NRPU project with grant number 7851/Balochistan/NRPU/R&D/HEC/2017”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zubair.

Appendix

Appendix

$$\begin{aligned}&f_1(r)\\&\quad =\sqrt{c r^2+d^{m-1} r^m+1},\\&f_2(r)\\&\quad =\sqrt{c r^2+d^{m-1} r^m},\\&f_3(r)\\&\quad =(m-6) \left( A d (m+2) \sqrt{c r^2+d^{m-1} r^m}+2 B r \left( c d r^2+d^m r^m\right) \right) \\&\qquad -2 B c (m-2) d^{1-m} r^{3-m} \left( c d r^2+d^m r^m\right) \\&\qquad \times \, _2F_1\left( 1,\frac{m-4}{m-2};\frac{3}{2}-\frac{2}{m-2};-c d^{1-m} r^{2-m}\right) ,\\&f_4(r)\\&\quad =\frac{d \left( f_1(r)-1\right) }{r^2 \left( c d r^2+d^m r^m+d\right) } \left( \frac{-2B(m-6)(m+2)r\left( c d r^2+d^m r^m\right) +f_1(r)-1}{f_3(r)}\right) ,\\&f_5(r)\\&\quad =2 Bc(m-3)(m-2)d^{1-m} r^{2-m} \left( c d r^2+d^m r^m\right) \, _2F_1\left( 1,\frac{m-4}{m-2};\frac{3}{2}-\frac{2}{m-2};-c d^{1-m} r^{2-m}\right) ,\\&f_6(r)\\&\quad = 2 Bc(m-2)d^{1-m} r^{2-m}\left( 2 c d r^2+m d^m r^m\right) \, _2F_1\left( 1,\frac{m-4}{m-2};\frac{3}{2}-\frac{2}{m-2};-c d^{1-m} r^{2-m}\right) ,\\&f_7(r)\\&\quad =\frac{4 B c^2 (m-4) (m-2)^2 d^{2-2 m} r^{4-2 m} \left( c d r^2+d^m r^m\right) \, _2F_1\left( 2,\frac{2 (m-3)}{m-2};\frac{5}{2}-\frac{2}{m-2};-c d^{1-m} r^{2-m}\right) }{3 m-10},\\&f_8(r) \\&\quad = \frac{2 B (m-6) (m+2) \left( c d r^2+d^m r^m\right) }{f_3(r)}, \end{aligned}$$

Also,

$$\begin{aligned}&g(r)\\&\quad = R^3(-(2 M-R))\left( c^2 d^2 R^4+c d R^2\left( 2 d^m R^m+d\right) +d^m R^m \left( d^m R^m\right. \right. \\&\qquad \left. \left. +d\right) \right) \Big [d^2 \Big [R^4 \left( 16 \beta ^2 c^2+\beta c \left( 56-32 f_1(r)\right) +1\right) \\&\qquad - 128 \beta ^2 \left( f_1(r)-1\right) +16 \beta R^2 \left( \beta c \left( 8-4 f_1(r)\right) -3 f_1(r)+3\right) +c R^6 (8 \beta c+1)\Big ]\\&\qquad +d^{m+1} R^m \Big [-64 \beta ^2 \left( f_1(r)-2\right) \\&\qquad + 8\beta R^2 \left( 4 \beta c-4 f_1(r)+7\right) +R^4 (16 \beta c+1)\Big ] \\&\qquad +8 \beta d^{2 m} R^{2 m} \left( 2 \beta +R^2\right) \Big ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubair, M., Ditta, A. & Waheed, S. Anisotropic stellar Finch-Skea structures satisfying Karmarkar condition in a teleparallel framework involving off-diagonal tetrad. Eur. Phys. J. Plus 136, 508 (2021). https://doi.org/10.1140/epjp/s13360-021-01431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01431-x

Navigation