Skip to main content
Log in

Twisted helical armchair graphene nanoribbons: mechanical and electronic properties

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The Hydrogen and Fluorine planar armchairs graphene nanoribbons (H & F AGNRs), subjected to twist deformation within fixed periodic boundary conditions. H-AGNRs is highly elastic in nature, though passivation with Fluorine does induce the plasticity when twisted beyond threshold torsional strain. This plasticity attributes to the wider bond length distribution suggests distortion of benzo-rings. The bandgap response to the effective strain of narrow GNRs \(\varvec{N}=6, 7\), and 8 get arranged as (i) monotonously increasing for \(\varvec{q}=0,2\) and (ii) decreasing for \(\varvec{q}=1\); here, \(\varvec{q}=mod\left( \varvec{N},3 \right) \) in effective strain space \({{({\varvec{\theta }} }}^{\varvec{2}}\varvec{\varSigma }^{\varvec{2}}\varvec{)}\). The effective strain space is found to be more appropriate for gauging the response of torsional strain. This trend has also been observed for Fluorine passivated AGNRs; however, because of higher sensitive response to torsional strain, the bandgap of \(\varvec{N}=\)7 F-AGNRs drops from \(\varvec{E}_{\varvec{g}}\simeq 0.95\hbox {eV}\) to \( \varvec{E}_{\varvec{g}}\simeq 0.05\hbox {eV}\) at extreme torsional strain forming Dirac cone at \(\pm \varvec{K}\) allows dissipationless transport to charge carriers of high kinetic energy at low bias.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

Data Availability Statement

My manuscript has data included as electronic supplementary material.

References

  1. L. Sun, Q. Li, H. Ren, H. Su, Q.W. Shi, J. Yang, J. Chem. Phys. 129, 074704 (2008)

    Article  ADS  Google Scholar 

  2. C. Si, Z. Sun, F. Liu, Nanoscale 8, 3207 (2016)

    Article  ADS  Google Scholar 

  3. J. van der Lit, P.H. Jacobse, D. Vanmaekelbergh, I. Swart, New J. Phys. 17, 053013 (2015)

    Article  Google Scholar 

  4. P. Koskinen, Phys. Rev. B Condens. Matter Mater. Phys. 85, 1 (2012)

    Article  Google Scholar 

  5. N.M. Al-Aqtash, R.F. Sabirianov, Nanoscale 6, 4285 (2014)

    Article  ADS  Google Scholar 

  6. D. Gunlycke, J. Li, J.W. Mintmire, C.T. White, Nano Lett. 10, 3638 (2010)

    Article  ADS  Google Scholar 

  7. T. Cao, F. Zhao, S.G. Louie, Phys. Rev. Lett. 119, 076401 (2017)

    Article  ADS  Google Scholar 

  8. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012)

    Article  ADS  Google Scholar 

  9. A. Kimouche, M.M. Ervasti, R. Drost, S. Halonen, A. Harju, P.M. Joensuu, J. Sainio, P. Liljeroth, Nat. Commun. 6, 10177 (2015)

    Article  ADS  Google Scholar 

  10. A.P. Johnson, H.V. Gangadharappa, K. Pramod, J. Control. Release 325, 141 (2020)

    Article  Google Scholar 

  11. K. Khaliji, S.R. Biswas, H. Hu, X. Yang, Q. Dai, S.H. Oh, P. Avouris, T. Low, Phys. Rev. Appl. 13, 011002 (2020)

    Article  ADS  Google Scholar 

  12. S.K. Alavi, B.V. Senkovskiy, D. Hertel, D. Haberer, Y. Ando, K. Meerholz, F.R. Fischer, A. Grüneis, K. Lindfors, A.C.S. Appl, Nano Mater. 3, 8343 (2020)

    Google Scholar 

  13. A. Celis, M.N. Nair, A. Taleb-Ibrahimi, E.H. Conrad, C. Berger, W.A. De Heer, A. Tejeda, J. Phys. D Appl. Phys. 49, 143001 (2016)

    Article  ADS  Google Scholar 

  14. Z. Xie, M. Chen, S.G. Peera, C. Liu, H. Yang, X. Qi, U.P. Kumar, T. Liang, ACS Omega 5, 5142 (2020)

    Article  Google Scholar 

  15. J.M. Marmolejo-Tejada, J. Velasco-Medina, Microelectron. J. 48, 18 (2016)

    Article  Google Scholar 

  16. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  17. G. Zhang, X. Jiang, E. Wang, Appl. Phys. Lett. 84, 2646 (2004)

    Article  ADS  Google Scholar 

  18. Z. Ren, P.-X. Gao, Nanoscale 6, 9366 (2014)

    Article  ADS  Google Scholar 

  19. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, Science 265, 635 (1994)

    Article  ADS  Google Scholar 

  20. A.L. Elías, A.R. Botello-Méndez, D. Meneses-Rodríguez, V. Jehová González, D. Ramírez-González, L. Ci, E. Muñoz-Sandoval, P.M. Ajayan, H. Terrones, M. Terrones, Nano Lett. 10, 366 (2010)

  21. A.N. Khlobystov, ACS Nano 5, 9306 (2011)

    Article  Google Scholar 

  22. T.W. Chamberlain, J. Biskupek, G.A. Rance, A. Chuvilin, T.J. Alexander, E. Bichoutskaia, U. Kaiser, A.N. Khlobystov, ACS Nano 6, 3943 (2012)

    Article  Google Scholar 

  23. L. Zhang, X. Wang, Phys. Chem. Chem. Phys. 16, 2981 (2014)

    Article  Google Scholar 

  24. O.V. Kibis, M.R. da Costa, M.E. Portnoi, Phys. E Low Dimens. Syst. Nanostructure 40(5), 1766–1768 (2007)

    Article  ADS  Google Scholar 

  25. M.E. Portnoi, O.V. Kibis, M. Rosenau da Costa, Superlattices Microstruct. 43, 399 (2008)

    Article  ADS  Google Scholar 

  26. M. Rosenau da Costa, O.V. Kibis, M.E. Portnoi, Microelectron. J. 40, 776 (2009)

    Article  Google Scholar 

  27. O.V. Kibis, P.P. Kuzhir, M.R. da Costa, M.E. Portnoi, J. Nanophotonics 4, 041665 (2010)

    Article  ADS  Google Scholar 

  28. F. Xu, W. Lu, Y. Zhu, ACS Nano 5, 672 (2011)

    Article  Google Scholar 

  29. D. Xia, Q. Li, Q. Xue, C. Liang, M. Dong, Phys. Chem. Chem. Phys. 18, 18406 (2016)

    Article  Google Scholar 

  30. C. Jiang, X.-F. Wang, M.-X. Zhai, Carbon N. Y. 68, 406 (2014)

    Article  Google Scholar 

  31. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, M.Y. Han, O. Barbaros, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  32. M. Saiz-Bretín, F. Domínguez-Adame, A.V. Malyshev, Carbon N. Y. 149, 587 (2019)

    Article  Google Scholar 

  33. M. Slota, A. Keerthi, W. Myers, E. Tretyakov, M. Baumgarten, A. Ardavan, H. Sadeghi, C. Lambert, A. Narita, K. Müllen, L. Bogani, Nature 557, 691 (2017)

    Article  ADS  Google Scholar 

  34. N. Gorjizadeh, A.A. Farajian, K. Esfarjani, Y. Kawazoe 1 (2008)

  35. S.-Y. Yue, Q.-B. Yan, Z.-G. Zhu, H.-J. Cui, Q.-R. Zheng, G. Su, Carbon N. Y. 71, 150 (2014)

    Article  Google Scholar 

  36. L. Song, S. Jin, P. Jiang, H. Hao, X. Zheng, L. Zhang, Carbon N. Y. 141, 676 (2019)

    Article  Google Scholar 

  37. F. Luis, E. Coronado, Nature (News and Views) 645, 1 (2018)

    Google Scholar 

  38. G.P. Tang, J.C. Zhou, Z.H. Zhang, X.Q. Deng, Z.Q. Fan, Appl. Phys. Lett. 101, 023104 (2012)

    Article  ADS  Google Scholar 

  39. J. Jia, D. Shi, X. Feng, G. Chen, Carbon N. Y. 76, 54 (2014)

    Article  Google Scholar 

  40. N. Xu, B. Huang, J. Li, B. Wang, Solid State Commun. 202, 39 (2015)

    Article  ADS  Google Scholar 

  41. A. Antidormi, M. Royo, R. Rurali, J. Phys. D Appl. Phys. 50, 234005 (2017)

    Article  ADS  Google Scholar 

  42. N. Al-Aqtash, H. Li, L. Wang, W.-N. Mei, R.F. Sabirianov, Carbon N. Y. 51, 102 (2013)

    Article  Google Scholar 

  43. N.K. Jaiswal, N. Tyagi, A. Kumar, P. Srivastava, Appl. Surf. Sci. 396, 471 (2017)

    Article  ADS  Google Scholar 

  44. K.V. Bets, B.I. Yakobson, Nano Res. 2, 161 (2009)

    Article  Google Scholar 

  45. A. Shahabi, H. Wang, M. Upmanyu, Sci. Rep. 4, 7004 (2015)

    Article  Google Scholar 

  46. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

  47. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997

  49. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  50. D.-B. Zhang, T. Dumitrică, Phys. Rev. B 85, 035445 (2012)

    Article  ADS  Google Scholar 

  51. M. Topsakal, V.M.K. Bagci, S. Ciraci, Phys. Rev. B 81, 205437 (2010)

    Article  ADS  Google Scholar 

  52. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, (2006)

    Article  ADS  Google Scholar 

  53. L. Yang, C.-H.H. Park, Y.-W.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  54. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 466, 470 (2010)

    Article  ADS  Google Scholar 

  55. X. Zhang, M. Zhao, Sci. Rep. 4, 5699 (2015)

    Article  Google Scholar 

  56. R. Faccio, P.A. Denis, H. Pardo, C. Goyenola, Á.W. Mombrú, J. Phys. Condens. Matter 21, 285304 (2009)

    Article  Google Scholar 

  57. Y. Li, J. Phys. D Appl. Phys. 43, 1 (2010)

    Google Scholar 

  58. O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006)

    Article  ADS  Google Scholar 

  59. P. Koskinen, Appl. Phys. Lett. 99, 013105 (2011)

    Article  ADS  Google Scholar 

  60. Y. Lu, J. Guo, Nano Res. 3, 189 (2010)

    Article  Google Scholar 

  61. F.L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

High-performance computing facility of Centre for Development of Advanced Computing (C-DAC), Pune, and CVRAMAN, high-performance computing cluster, at Himachal Pradesh University, Shimla has been used in obtaining the results presented in this paper. Authors acknowledge the SIESTA team for providing code under a free license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Thakur.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 518 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R., Ahluwalia, P.K., Kumar, A. et al. Twisted helical armchair graphene nanoribbons: mechanical and electronic properties. Eur. Phys. J. B 94, 99 (2021). https://doi.org/10.1140/epjb/s10051-021-00102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00102-1

Navigation