Skip to main content
Log in

Structure Constant and Grain Size Determination by Ferromagnetic Resonance in Thin Magnetic Films

  • PHYSICS OF MAGNETIC PHENOMENA
  • Published:
Russian Physics Journal Aims and scope

The paper shows that the structure constant and the average crystal grain size of anisotropic nanocrystalline magnetic film can be determined by analyzing the shape of the microwave absorption peak in sweeping the external magnetic field along the hard magnetization axis. In the theory of magnetization ripple, the surface energy density of the local magnetic anisotropy is connected with the structure constant, which can be used to determine the quality of nanocrystalline films. The effectiveness of the structure constant measurements is demonstrated on a 300-nm-thick nanocrystalline Co–P film. Spectral data on the microwave absorption are collected in the ~1 mm2 region of the film using a scanning ferromagnetic resonance spectrometer. The structure constant obtained from the spectral analysis allows detecting the average grain size of the magnetic film, which is in good agreement with transmission electron microscopy observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Petzold, JMMM, 242–245, 84–89 (2002).

    Article  ADS  Google Scholar 

  2. A. N. Babitskii, B. A. Belyaev, N. M. Boev, et al., Instrum. Exp. Tech., 59, No. 3, 425–432 (2016).

    Article  Google Scholar 

  3. B. A. Belyaev, N. M. Boev, A. V. Izotov, et al., Russ. Phys. J., 61, No. 8, 1367–1375 (2018).

    Article  Google Scholar 

  4. M. Yamaguchi, Kim K. Hyeon, and S. Ikedaa, JMMM, 304, 208–213 (2006).

  5. B. A. Belyaev, A. V. Izotov, An. A. Leksikov, et al., Russ. Phys. J., 63, No. 9, 1447–1460 (2021).

  6. K. J. Harte, J. Appl. Phys., 39, 1503–1524 (1968).

    Article  ADS  Google Scholar 

  7. H. Hoffmann, IEEE Trans. Magn., 4, 32–38 (1968).

    Article  ADS  Google Scholar 

  8. B. A. Belyaev, A. V. Izotov, and P. N. Solovev, J. Siberian Federal Univ. Math. Phys., 10, No. 1, 132–135 (2017).

    Article  Google Scholar 

  9. A. V. Izotov, B. A. Belyaev, P. N. Solovev, and N. M. Boev, Russ. Phys. J., 61, No. 12, 2313–2320 (2019).

    Article  Google Scholar 

  10. V. I. Petrov, G. V. Spivak, and O. P. Pavlyuchenko, Soviet Physics Uspekhi, 106, No. 2, 229–278 (1972).

    Google Scholar 

  11. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. Royal Soc., A 240, 599–644 (1948).

    ADS  Google Scholar 

  12. K. Kempter and H. Hoffmann, Phys. Status Solidi, 34, 237–249 (1969).

    Article  Google Scholar 

  13. B. A. Belyaev, A. V. Izotov, and S. Ya. Kiparisov, Tech. Phys. Let., 74, No. 4, 226–230 (2001).

  14. A. Aharony, E. H. Frei, S. Shtrikman, and D. Treves, Bull. Res. Counc. Isr., 6 A, 215–238 (1957).

  15. H. Hoffmann, Thin Solid Films, 373, 107–112 (2000).

    Article  ADS  Google Scholar 

  16. H. Hoffmann, Phys. Status Solidi, 33, 175–190 (1969).

    Article  Google Scholar 

  17. W. D. Doyle and T. F. Finnegan, J. Appl. Phys., 39, 3355–3364 (1968).

  18. A. G. Gurevich and G. A. Melkov, Magnetic Vibrations and Waves [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  20. B. A. Belyaev, A. V. Izotov, and A. A. Leksikov, IEEE Sens. J., 5, 260–267 (2005).

    Article  ADS  Google Scholar 

  21. B. A. Belyaev, S. Ya. Kiparisov, G. V. Skomorokhov, and A. V. Izotov, Phys. Solid State, 50, No. 4, 676–683 (2008).

  22. B. A. Belyaev, A. V. Izotov, and P. N. Solovev, Physica B Condens. Matter, 481, 86–90 (2016).

    Article  ADS  Google Scholar 

  23. B. A. Belyaev, A. V. Izotov, P. N. Solovev, and I. A. Yakovlev, JMMM, 440, 181–184 (2017).

    Article  ADS  Google Scholar 

  24. H. P. J. Wijn, Magnetic Properties of Metals: D-Elements, Alloys and Compounds, Springer, Berlin (1991).

    Book  Google Scholar 

  25. V. A. Zhuravlev, V. I. Itin, R. V., Minin et al., J. Alloys Compd., 771, 686–698 (2019).

  26. B. A. Belyaev, N. M. Boev, А. А. Gorchakovskii, and R. G. Galeev, Instrum. Exp. Tech., No. 2, 277–284 (2021).

  27. B. A. Belyaev, A. V. Izotov, G. V. Skomorokhov, and P. N. Solovev, Mater. Res. Express, 6, 116105 (2019).

    Article  ADS  Google Scholar 

  28. B. A. Belyaev, N. M. Boev, A. V. Izotov, et al., Russ. Phys. J., 63, No. 1, 16–22 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Belyaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 3–9, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, B.A., Boev, N.M., Gorchakovskii, A.A. et al. Structure Constant and Grain Size Determination by Ferromagnetic Resonance in Thin Magnetic Films. Russ Phys J 64, 1–8 (2021). https://doi.org/10.1007/s11182-021-02293-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02293-7

Keywords

Navigation