Skip to main content
Log in

Features of Phonon Spectra of CeO2, ThO2, and NpO2 Crystals Due to the Structure of their Sublattices

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

In the CeO2, ThO2, and NpO2 crystals, the acoustic branches of the phonon spectra correspond predominantly to the vibrations of metal ions, and the optical branches correspond mainly to the vibrations of oxygen ones, due to a significant difference in the masses of these components of the compounds. An important crystallographic phenomenon is that metal and oxygen are located in sublattices corresponding to different Bravais types, which makes it possible to analyze vibrations in the corresponding Brillouin zones (BZ). This analysis was carried out by unfolding the optical branches of the phonon spectrum from the BZ of the crystal into the BZ of the oxygen sublattice. The number of optical branches in this BZ is half that in the BZ of the crystal. The effect of anharmonicity on the thermal broadening of the spectral lines of the phonon frequencies is studied in the approximation of two-phonon densities of states. For all three compounds, the calculated two-phonon densities of states represent two broad structured peaks. The temperature dependences of the upper peak show thermal broadening of the upper part of the optical branches and the lower peak shows thermal broadening of the low-energy optical and acoustic branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Mogensen, N. M. Sammes, and G. A. Tompsett, Solid State Ion., 129, 63 (2000).

    Article  Google Scholar 

  2. https://wiki2.org/en/Nuclear_fuel.

  3. B. T. Willis, Proc. R. Soc. Lond. A, 274, 122 (1963).

    Article  ADS  Google Scholar 

  4. B. T. Willis, Proc. R. Soc. Lond. A, 274, 134 (1963).

    Article  ADS  Google Scholar 

  5. H. Serizawa, Y. Arai, M. Takano, and Y. Suzuki, J. Alloys Compounds, 282, 17 (1999).

    Article  Google Scholar 

  6. H. Serizawa, Y. Arai, and Y. Suzuki, J. Nucl. Mater., 280, 99 (2000).

    Article  ADS  Google Scholar 

  7. M. Yashima, D. Ishimura, Y. Yamaquchi, et al., Chan. Phys. Lett., 372, 784 (2003).

    Article  ADS  Google Scholar 

  8. R. Caciuffo, G. H. Lander, J. C. Spirlet, et al., Solid State Commun., 64, 149 (1987).

    Article  ADS  Google Scholar 

  9. R. Clausen, W. Hayes, M. T. Hutchings, et al., Rev. Phys. Appl., 19, 719 (1984).

    Article  Google Scholar 

  10. S. Kern, J. Morris, C. K. Loong, et al., J. Appl. Phys., 63, 3598 (1988).

    Article  ADS  Google Scholar 

  11. T. Sato and S. Tateyama, Phys. Rev. B, 26, 2257 (1982).

    Article  ADS  Google Scholar 

  12. W. H. Weber, K. C. Hass, and J. R. McBride, Phys. Rev. B, 48, 178 (1993).

    Article  ADS  Google Scholar 

  13. A. S. Poplavnoi and T. P. Fedorova, Fundament. Probl. Sovrem. Materialoved., (www.usmds.ru/joirual.html) 9, 324 (2012).

  14. A. S. Poplavnoi and T. P. Fedorova, Izv. Vyssh. Uchebn. Zaved. Fiz., 54, No. 1/3, 182 (2011).

    Google Scholar 

  15. T. Gürel and R. Eryigit, Phys. Rev. B, 74, 014302-1–5 (2006).

  16. B.-T. Wang, H. Shi, W.-D. Li, and P. Zhang, J. Nucl. Mater., 399, 181 (2010).

    Article  ADS  Google Scholar 

  17. K. Kurosaki, M. Imamura, I. Sato, et al., J. Nucl. Technol., 41, 827 (2004).

    Article  Google Scholar 

  18. V. Sobolev, J. Nucl. Mater., 344, 198 (2005).

    Article  ADS  Google Scholar 

  19. A. S. Poplavnoi, Russ. Phys. J., 51, No. 7, 692 (2008).

    Article  Google Scholar 

  20. A. S. Poplavnoi, T. P. Fedorova, and I. A. Fedorov, Fiz. Tverd. Tela, 59, 748 (2017).

    Google Scholar 

  21. A. S. Poplavnoi, Russ. Phys. J., 61, No. 9, 1726 (2018).

    Article  Google Scholar 

  22. T. P. Kirienko and A. S. Poplavnoi, Russ. Phys. J., 53, No. 4, 325 (2010).

    Article  Google Scholar 

  23. A. S. Poplavnoi, Kristallograf. Rep, 52, 597 (2007).

    Google Scholar 

  24. A. S. Poplavnoi, Russ. Phys. J., 49, No. 6, 574 (2006).

    Article  MathSciNet  Google Scholar 

  25. A. S. Poplavnoi, Kristallograf. Rep, 55, No. 2, 181 (2010).

    Google Scholar 

  26. K. Clausen, W. Hayes, J. E. MacDonald, et al., J. Chem. Soc., Faraday Trans. 2, 83, 1109 (1987).

  27. T. P. Fedorova and A. S. Poplavnoi, Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 8/3, 138 (2013).

    Google Scholar 

  28. K. Wakamura, Phys. Rev. B, 56, 11593 (1977).

    Article  ADS  Google Scholar 

  29. K. Wakamura, Phys. Rev. B, 59, 3560 (1999).

    Article  ADS  Google Scholar 

  30. R. P. Lowndes, J. Phys. C, 4, 3083 (1971).

    Article  ADS  Google Scholar 

  31. K. Schmalzl, D. Strauch, and H. Scholer, Phys. Rev. B, 68, 144301 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Zolotarev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 50–57, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotarev, M.L., Poplavnoi, A.S., Fedorova, T.P. et al. Features of Phonon Spectra of CeO2, ThO2, and NpO2 Crystals Due to the Structure of their Sublattices. Russ Phys J 64, 58–66 (2021). https://doi.org/10.1007/s11182-021-02300-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02300-x

Keywords

Navigation